Phase Transitions of Disordered Traveling Salesperson Problems solved with Linear Programming and Cutting Planes

Hendrik Schawe Alexander K. Hartmann

March 9, 2016
Regensburg

Traveling Salesperson Problem

Linear Programming

Results

Solution probability p
Structural Properties

Traveling Salesperson Problem (TSP)

Given a set of cities V and their pairwise distances $c_{i j}$, what is the shortest tour visiting all cities and returning to the start?

Traveling Salesperson Problem (TSP)

Given a set of cities V and their pairwise distances $c_{i j}$, what is the shortest tour visiting all cities and returning to the start?

Tunable Ensemble

Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle with $R=N / 2 \pi$

Tunable Ensemble

Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle with $R=N / 2 \pi$
2. displace cities randomly

Tunable Ensemble

Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle with $R=N / 2 \pi$
2. displace cities randomly

$r \in U[0, \sigma], \phi \in U[0,2 \pi)$
3. optimize the tour

Is there a phase transition easy circle \rightarrow hard realization?

Linear Programming (LP)

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{x} \in \mathbb{R}^{N}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{c} & =\binom{-1}{-1} \\
\mathbf{A} & =\left(\begin{array}{ll}
\frac{4}{9} & 1 \\
1 & \frac{1}{5}
\end{array}\right) \\
\mathbf{b} & =\binom{5}{2.5}
\end{aligned}
$$

Linear Programming (LP)

$$
\begin{aligned}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \\
& \mathbf{x} \in \mathbb{R}^{N}
\end{aligned}
$$

- works outside the space of feasible solutions
- polynomial time
- can be used for combinatorial (integer) problems
- is not always a valid solution
- result valid \rightarrow result optimal
- yields at least a lower bound

LP formulation of the TSP

$x_{i j}=1$ if i and j adjacent in tour
$\operatorname{minimize} \sum_{i} \sum_{j<i} c_{i j} x_{i j}$
subject to

$$
\begin{aligned}
\sum_{j} x_{i j} & =2 \\
\sum_{i \in S, j \notin S} x_{i j} & \geq 2 \quad i=1,2, \ldots, N \\
x_{i j} & \in\{0,1\}
\end{aligned} \quad \forall S \subset V, S \neq \varnothing, S \neq V
$$

- $\forall S \subset V$ are exponentially many
- add only violated (via cutting planes)
- $x_{i j}$ are restricted to integer
- relax it to $x_{i j} \in[0,1]$ (may lead to infeasible solutions)

Dantzig, Fulkerson, Johnson, J. Oper. Res. Soc. Am., 2 (1954) 393

Solution probability p

Probability p that the SEC-relaxation is integer

Further transition at $\sigma \approx 0.5$ for weaker relaxation.
Schawe, Hartmann, EPL 113 (2016) 30004

Structural Properties

Algorithmic phase transition
\rightarrow search for physical properties that change

- solve them by branch-and-cut (exact \rightarrow only small instances)

Tortuosity

$$
\tau=\frac{n-1}{L} \sum_{i=1}^{n}\left(\frac{L_{i}}{S_{i}}-1\right)
$$

Grisan, Foracchia, Ruggeri, Proceedings of the 25th Annual International Conference of the IEEE Vol. 12003 pp. 866-869

Tortuosity

$$
\tau=\frac{n-1}{L} \sum_{i=1}^{n}\left(\frac{L_{i}}{S_{i}}-1\right)
$$

Universality

Same analysis with other ensembles or constraints

	σ_{c}	b
Degree relaxation	$\sigma_{c}^{\mathrm{lp}}=0.51(4)$	$b^{\mathrm{lp}}=0.29(6)$
SEC relaxation	$\sigma_{c}^{\mathrm{cp}}=1.07(5)$	$b^{\mathrm{cp}}=0.43(3)$
	$\sigma_{c}^{\tau}=1.06(23)$	-
	$\sigma_{c}^{\mathrm{cp}, \mathrm{g}}$	$=0.47(3)$
	$\sigma_{c}^{\tau, \mathrm{g}}=0.44(8)$	$b^{\mathrm{cp}, \mathrm{g}}=0.45(5)$
	$\sigma_{c}^{\mathrm{cp}, 3}=1.18(8)$	$b^{\mathrm{cp}, 3}=0.40(4)$
fast Blossom rel.	$\sigma_{c}^{\mathrm{fb}}=1.47(8)$	$b^{\mathrm{fb}}=0.40(3)$

Summary

- linear programming to determine hardness
- three easy-hard transition points
- two structural properties changing at a transition

