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Large deviations of the length of the longest increasing subsequence
of random permutations and random walks
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We study numerically the length distribution of the longest increasing subsequence (LIS) for random
permutations and one-dimensional random walks. Using sophisticated large-deviation algorithms, we are able
to obtain very large parts of the distribution, especially also covering probabilities smaller than 10−1000. This
enables us to verify for the length of the LIS of random permutations the analytically known asymptotics of the
rate function and even the whole Tracy-Widom distribution. We observe a rather fast convergence in the larger
than typical part to this limiting distribution. For the length L of LIS of random walks no analytical results are
known to us. We test a proposed scaling law and observe convergence of the tails into a collapse for increasing
system size. Further, we obtain estimates for the leading-order behavior of the rate functions in both tails.

DOI: 10.1103/PhysRevE.99.042104

I. INTRODUCTION

We study the length distribution of the longest increas-
ing subsequence (LIS) [1] of different ensembles of random
sequences. A subsequence of a sequence S consists of el-
ements of S in the same order as in S. But neighbors in
the subsequence are not necessarily neighbors in S. For a
LIS it is required that the elements of the subsequence are
increasing from left to right, and the number of elements in
the subsequence is maximal.

The first mention of this problem involving random permu-
tations (RPs) is from Stanisław Ulam [2] and is also known as
“Ulam’s problem.” In his study the mean length L of LIS on
RP of n integers were examined by means of Monte Carlo
simulations. It was conjectured that, in the limit of large n, the
length converges to L = c

√
n, with a constant c, which was

later proven to be c = 2 [3]. In the following years much work
was published scrutinizing the large-deviation behavior of this
problem, and explicit expressions for both the left (lower) and
right (upper) tail were derived rigorously [4–6]. Interestingly,
for the LIS of RPs it was shown that the length distribution
P(L) is a Tracy-Widom distribution [7].

The Tracy-Widom distribution was at that time only known
from random matrix theory, where it describes the fluctuations
of the largest eigenvalues of the Gaussian unitary ensem-
ble (GUE), an ensemble of Hermitian random matrices. In
physics it came into focus after an explicit mapping of an 1 +
1-dimensional polynuclear growth model [8]. Subsequently
other mappings of 1 + 1-dimensional growth models belong-
ing to the Kardar-Parisi-Zhang universality like an anisotropic
ballistic deposition were found [9]. Other models, in which
the Tracy-Widom distribution appears, include the totally
asymmetric exclusion process [10] and directed polymers
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[11]. For a pedagogical overview of the relations of different
models exhibiting a Tracy-Widom distribution there are some
review articles, e.g., Refs. [12–14]. Fluctuations in growth
processes following the Tracy-Widom distribution could also
be observed in experiments, e.g., from growing liquid crystals
where the Tracy-Widom distribution of the GUE appears for
circular growth [15] and of the Gaussian orthogonal ensemble
(GOE) for growth from a flat surface [16].

The Tracy-Widom distribution seems to occur always to-
gether with a third-order phase transition between a strongly
interacting phase in the left tail and a weakly interacting phase
in the right tail [17]. For these third-order phase transitions,
the probability density function behaves in the left tail as
P(x) ≈ e−n�− with the role of the free energy played by
the rate function �−(x) ∼ (a − x)3 for x → a from the left,
where the scaled mean value a is the critical point of the
transition. Here n is some large parameter, e.g, the system
size. The O(x3) leading-order behavior of �− generally leads
to a discontinuity in the third derivative of the free energy
and therefore to a third-order phase transition. This seems
to be a characteristic sign predicting the main region of the
distribution to follow a Tracy-Widom distribution. Therefore
the behavior of the far tails of these problems is of great
interest to understand this connection better. Consequently
the large deviations of some of these models were studied
thoroughly [17,18].

For the length distribution in the RP case the large devia-
tions, the behavior for large values of n including the far tails,
are known analytically [4–7]. These show the characteristic
behavior of the above mentioned left-tail rate function. For the
case of random walks (RWs), bounds for the behavior of the
mean are known [19], and there is also numerical work which
is concerned with the distribution in the typical region [20],
i.e., those LISs which occur with a high enough probability of
about � 10−6. We also deem it worthwhile to look closer at
the tails of the distribution for finite systems.

For the purpose of studying the large deviations of this
problem numerically, we utilize sophisticated large-deviation
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FIG. 1. Visualization of random sequences of length n = 1000
where the value is plotted over the corresponding index. Marked with
circles are the entries of one possible LIS. (a) Random permutation
(RP), (b) random walk (RW).

sampling methods to observe the distribution P(L). In this
way we can observe directly the far tails of the Tracy-
Widom distribution for the RP case [7] and can confirm
the known large n asymptotics [6]. The second ensemble
are one-dimensional RWs with increments from a uniform
distribution. While we can observe the scaling proposed in
Ref. [20] for the main region, the tails are subject to consider-
able finite-size effects. Nevertheless the distributions collapse
over larger regions for larger sizes n. Also, we give estimates
for the leading-order behavior of the rate functions governing
the left and right tails of the distribution P(L).

This study first introduces the different ensembles of in-
terest and the algorithms used to obtain the distribution of the
length in Sec. II. Section III shows the results we gathered and
interprets them. We conclude this study in Sec. IV.

II. MODELS AND METHODS

To define the LIS, we have to define a subsequence first.
Given some sequence S = (S1, S2, . . . , Sn) a subsequence of
length L is a sequence s = (Si1 , Si2 , . . . , SiL ) (1 � i j � n, i j <

i j+1 for all j = 1, . . . , L) containing only elements present in
S in the same order as in S, though possibly with gaps. An
increasing subsequence has elements such that every element
in s is smaller than its predecessor, i.e., Si j < Si j+1 for j =
1, . . . , L − 1. The LIS is consequently the longest, i.e., the
one with the highest number L of elements, of all possible
increasing subsequences. Note that the LIS is not necessarily
unique, but by definition its length is unique. As an example
two different LISs are marked by overlines and underlines in
the following sequence: S = (3, 9, 4, 1, 2, 7, 6, 8, 0, 5).

In this study the sequence S is drawn either from the
ensemble of random permutations of n consecutive integers
or from the ensemble of random walks with increments
δ j ( j = 1, . . . , n) from a uniform distribution δ j ∼ U (−1, 1),
such that

Si =
i∑

j=1

δ j . (1)

An example of each sequence with the corresponding LIS
marked is shown in Fig. 1.

To find L of any given sequence, we use the patience
sort algorithm. We introduce only the very simple version to

obtain the length, but a comprehensive review of the connec-
tion of patience sort with the LIS can be found in Ref. [3].
In short, the patience sort algorithm works as follows: We
iterate over the n entries Si and place each into an initially
empty stack (or pile) a j on the smallest j such that for the
top entry top(a j ) > Si holds. Note that this always ensures
that the top entries of a are ascendingly sorted, such that we
can determine j by a binary search in O(ln n). Finally, the
number of nonempty stacks a j is equal to the length L of
the LIS.

A. Large-deviation sampling

To be able to gather statistics of the large-deviation regime
numerically [21], we need to apply a sophisticated sampling
scheme. Therefore we use a well-tested [22–24] Markov
chain Monte Carlo sampling which treats the system as a
canonical system at an artificial temperature with the observ-
able of interest as its energy. Since the algorithm has been
presented comprehensively in the literature, we here mainly
state the details specific to the current application. In our case,
we identify the state of the system with the sequence, the
length L with the energy and sample the equilibrium state
at temperature � using the Metropolis algorithm [25,26].
Controlling the temperature allows us to direct the sampling
to different regimes of the distributions, to eventually cover
the distribution over a large part of the support. To evolve
our Markov chain of sequences, we have to introduce change
moves, which modify a sequence and consequently the energy
L. For the RP we swap two random entries, and for the RW we
replace one of the increments δ j [cf. Eq. (1)] by a new random
number drawn from the same uniform distribution. These
changes are accepted according to the Metropolis acceptance
ratio

Pacc = min(1, e−�L/�), (2)

where �L is the change in energy due to the change move.
This Markov chain of sequence realizations converges to an
equilibrium state. As usual with Markov chain Monte Carlo
simulations, we need to ensure equilibration and that the
samples are decorrelated [26].

In equilibrium the realizations generally have a lower than
typical energy for low temperatures and typical energies for
high temperatures. We also introduce negative temperatures
for larger than typical energies. This way the temperature can
be tuned to guide the simulation towards realizations within a
specific range of energies L. We know the equilibrium distri-
bution Q�(S) at temperature � of realizations, i.e., sequences
S, to be

Q�(S) = 1

Z�

e−L(S)/�Q(S), (3)

with the natural distribution Q(S), i.e., the distribution of
realizations arising by simply generating subsequences uni-
formly. This can be exploited to correct for the bias introduced
by the temperature and arrive at the unbiased distribution
P(L) with good statistics also in the regions unreachable by
simple sampling. Therefore consider the sampled equilibrium
distributions P�(L). To connect them to the distribution of
realizations Q�(S), we can sum all realizations with the same
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FIG. 2. Intermediate step after correction with Eq. (6) but before
determination of the values Z�i (i.e., all Z�i = 1). The data are
gathered for RW sequences of length n = 512. Each shade of gray
(color) is sampled at a different temperature �, and for three data
sets the corresponding temperatures are annotated. (For clarity some
evaluated temperatures are omitted.)

value of L, leading to

P�(L) =
∑

{S|L(S)=L}
Q�(S) (4)

=
∑

{S|L(S)=L}

1

Z�

e−L(S)/�Q(S) (5)

= 1

Z�

e−L(S)/�P(L). (6)

Solving this equation for P(L) allows us to correct for the bias
introduced by the temperature. An intermediate snapshot of
this process is shown in Fig. 2.

The constants Z� can be obtained by enforcing continuity
of the distribution,

P� j (L)eL/� j Z� j = P�i (L)eL/�i Z�i , (7)

for pairs of i, j for which the gathered data P�i (L) overlap
with P� j (L). While this can be used to approximate the ratios
of pairwise Z�i , the absolute value can then be obtained
by normalization of the whole distribution. This procedure
requires a clever choice of temperatures, since gaps in the
sampled range of L would make it impossible to find a ratio of
Z�i on the left and right sides of the gap. We use on the order
of 100 distinct temperatures. In general, the larger the size n,
the more temperatures are needed.

III. RESULTS

Before we look into the large-deviation tails, we in brief
present some simple sampling results addressing the quali-
tative difference of RP and RW cases, which are visible in
Fig. 1. The entries of the RW are strongly correlated such that
the RW typically consists of runs with downward or upward
trends. This means that the LIS is typically confined in an
upward trend, and its entries therefore are close together. The
RP, on the other hand, typically shows LISs with entries over
the whole range.

To quantify this effect we measure the fraction of the
sequence over which the LIS spans. For multiple system
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FIG. 3. Extrapolation of the span ρ. Measurements at different
sizes n are used to extrapolate an asymptotic span according to a
power law with offset ρ = anb + ρ∞. Fits to this expression for n �
4096 are marked by a line. The two obtained asymptotic values are
ρ

rp
∞ = 1.00005(2) for the RP and ρ

rp
∞ = 0.439(7) for the RW. Note

the broken ρ axis. Error bars are smaller than the width of the line.

sizes 1024 � n � 524 288, 106 samples each, we measure
the positions i, j of the first and last entries of a found LIS
to calculate its relative span ρ = ( j − i)/n. We extrapolate
the mean span with an offset power law ρ = anb + ρ∞ to
extrapolate the asymptotic span ρ∞, which is shown in Fig. 3.

For the RP we get a value of ρ
rp
∞ = 1.00005(2) and for the

RW ρ
rp
∞ = 0.439(7). Note that these numbers are subject to

two sources of systematical errors, which can explain, e.g.,
the impossible result of ρ

rp
∞ > 1. First, the function we use to

extrapolate is an ansatz, which considers only leading-order
behavior of the actual scaling function. Second, we obtain
only one LIS per sequence via the backpointer extension of
patience sort [3], which might result in a biased selection of
LISs. Both questions merit further research on their own but
are beyond the scope of this article. This means that LISs of
RPs typically span the whole sequence, while LISs of RWs
typically span only less than half of the sequence, such that its
entries are closer together.

To gather statistics of L, we apply the temperature-based
sampling scheme for the two cases of RPs and of RWs with
uniform increments. In both cases, we study five different
system sizes n up to n = 4096 each.

A. Random permutations

First, we look at the LIS length distribution of RPs. For this
case there are already many properties known in the limit of
n → ∞.

It is known that the distribution should converge to a
suitably rescaled Tracy-Widom distribution χ of the GUE
ensemble [7] for large values of n as

Pn[(L − 2
√

n)n−1/6] = χ [(L − 2
√

n)n−1/6]. (8)

Rescaled to compensate for this leading behavior, our results
are shown in Fig. 4. By using the large-deviation approach, we
are able to measure probabilities as small as 10−1000 and less,
allowing us to go beyond the first numerical work [20] on the
distribution of LISs. We can observe a very good collapse up
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FIG. 4. Numerically obtained distributions for different system
sizes n rescaled according to Eq. (8). The Tracy-Widom distribution
is drawn as a black line [27] and is expected to be the curve all dis-
tributions collapse onto. The inset shows a zoom on the intermediate
tails. On the left the tendency of our data towards the Tracy-Widom
distribution with increasing system size n is visible. (For clarity some
data points are discarded to show the same density of symbols for
every system size.)

to probabilities of 10−200 of our data onto the Tracy-Widom
distribution given in the tables of Ref. [27].

Also note that the collapse works very well in the in-
termediate right tail but converges a bit slower in the left
tail and far slower in the far-right tail. The inset zooms
into the intermediate tail of the probability density function
P > 10−100, where the collapse fits very well to the expected
Tracy-Widom distribution. In the far tails we observe consid-
erable deviations, from the tabulated data, which are at least
in part caused by finite-size effects due to the relatively small
sizes n of our sequences. For a more extensive study of these
finite-size effects, one could obtain the empirical distribution
for more sizes, and extrapolate the finite-size effects to n →
∞, as done in Ref. [28]. We do not attempt this analysis
here, since the very small deviations between different values
of n in the right tail suggest that data for much larger sizes
would be needed for a meaningful extrapolation. This is at the
moment not computationally feasible for us. Nevertheless, our
numerically obtained tails fit very well to another expected
form, which will be explained later, such that we assume a
stronger influence of corrections to scaling in the far tails
instead of systematic errors in our data.

Also note that while we can sample a very large part of
the distribution P(L) in the RP case—even including events
with a probability less than 10−1000 for the largest systems—
we cannot reach across the whole range of possible values.
Possible approaches to extend this range are improvements to
our sampling algorithm by, e.g., switching to a better change
move or trying a different sampling algorithm like Wang-
Landau’s method [29].

The left-tail asymptotic, i.e., L/
√

n = x < 2, of the proba-
bility density function is given by the analytically known rate
function [5,6]

lim
n→∞

1

n
ln Pn(L) = −2H0(x) (9)
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FIG. 5. Empirical rate functions for different system sizes n. On
the top (triangles down) scaled as ln Pn(L)/

√
n to emphasize the

right-tail behavior. On the bottom (triangles up) scaled as ln Pn(L)/n
to emphasize the left tail behavior. The analytically known rate
functions for both tails 2H0 and U0 are shown in the correspondingly
scaled region and a convergence of the data to these functions is well
visible. The leading-order terms of the series expansion (cf. Ref. [4])
are also shown as straight lines next to the rate function.

with

H0(x) = −1

2
+ x2

8
+ ln

x

2
−

(
1 + x2

4

)
ln

(
2x2

4 + x2

)
;

(10)

the right-tail asymptotic, i.e., L/
√

n = x > 2, is given by [4,6]

lim
n→∞

1√
n

ln Pn(L) = −U0(x) (11)

with

U0(x) = 2x cosh−1(x/2) − 2
√

x2 − 4. (12)

Note that Eq. (11) behaves atypically for a rate function as
the distribution behaves like Pn ∝ e−√

nU0 , which according
to the definition (e.g., Ref. [30]) does therefore not fulfill
the large-deviation principle. Nevertheless, it describes the
right-tail behavior of the distribution in leading order.

We use our sampled data to test these rate functions. If the
data are suitably rescaled according to Eqs. (9) and (11), in the
corresponding tails we can observe a very nice convergence
of the data to the rate functions. This is plotted in Fig. 5. This
excellent agreement of analytical and numerical results over
hundreds of decades in probability gives us confidence that
our approach works well and can be extended to cases where
no analytical results are known. Also note that we can observe
in our data the leading-order behavior of the left-tail rate
function H0, which goes with the exponent 3 characteristic
for the third-order phase transition, confirming its connection
with the Tracy-Widom distribution [17].

B. Random walks

The second class of sequences S we scrutinize are RWs.
The distribution beyond the high-probability peak region
seems to be unknown. Again, by applying the large-deviation
approach, we sample basically the whole distribution and
can even compare the right tail of our distribution with the
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FIG. 6. Probability distributions Pn(L) of the length of the LIS of
RWs with exact extreme values for the n = L case. (For clarity only
every 40th bin is visualized, including the n = L bin.)

corner case of L = n, which occurs only if all increments δ

are positive and therefore with probability 2−n. This case is
marked in Fig. 6 to emphasize the quality of our data. For the
left tail, we can not sample so far, as the very steep decline of
the distribution is difficult to handle for our sampling scheme.

For RWs with increments from a symmetric uniform distri-
bution, indeed for increments from any symmetric distribution
with finite variance, the scaling of the mean as 〈L〉 ∝ nθ and
the variance as σ 2 ∝ n2θ was observed in Ref. [20] with θ =
0.5680(15) for finite system sizes. This observation lead to
the assumption that the whole distribution follows the scaling
form

Pn(L) = 〈L〉g(〈L〉L), (13)

with a not explicitly known function g. Even more, Ref. [20]
suggests that their measurements can be explained, instead of
the exponent θ , by a logarithmic correction to a square-root
scaling:

〈L〉 ≈ 1

e

√
n ln n + 1

2

√
n. (14)

Using our data for the tails of the distribution, we can test
whether this scaling holds over the whole distribution or only
in the main region. If we rescale the axis of the plot suitably,
the distributions for different sizes n should collapse on the
scaling function g, in the case that Eq. (13) holds. Note that the
related problem of the longest weakly increasing subsequence
for RW increments of ±1 is known to scale also with

√
n but

does not exhibit the logarithmic correction [19]. Our collapse
in Fig. 7 following Eq. (13) supports the validity of Eq. (14).
The collapse does work except for the very far tails, which
is an effect—at least partially—caused by finite-size effects,
since the length of the LIS can for finite n never be longer
than n. This pattern occurs often when looking at the far tails
of discrete systems, e.g., for the convex hull of RWs on lattices
in Refs. [31–34] or in a toy model for noninteracting Fermions
in a landscape with n random energy levels [28].

Since for the rate functions characterizing the LIS length
distribution of RWs there is no known result, we use our
numerical data to give a rough estimate of the rate function.
Therefore we look into the empirical rate function �n(L) =

FIG. 7. Collapse of different system sizes on a common curve g
from Eq. (13), with 〈L〉 given by Eq. (14). Apparently the far tail
shows corrections to the proposed scaling for finite sizes, which are
explained by finite-size effects, e.g., that there is a maximum length
of n for finite systems. For increasing sizes n a convergence to a
common curve is visible. The inset shows the same in linear scale
around the maximum. (For clarity not all data points are drawn.)

1
n ln Pn(L), which is plotted in Fig. 8 for the data already
shown in Fig. 6.

Using the empirical rate function we can obtain the asymp-
totics of the rate function from our data. Note that to estimate
the right-tail rate function we use the intermediate tail and not
the far tail, which is bending up due to finite-size effects, as
the very long LISs are suppressed by the hard limit of L � n..
Since we are interested only in the leading-order exponent of
the rate function, i.e., assuming �(L) ∝ Lκ for very small and
very large values of L, we can rescale the axes arbitrarily due
to the scale invariance of power laws. For convenience we
look at x = L/Lmax to limit the range to the interval [0,1]. For
the left tail we observe a leading-order behavior of the rate
function of approximately �(L) ∼ L−1.6 and for the right tail
�(L) ∼ L2.9. Note that the exponent of the left tail is clearly
distinct from 3, such that it does not show signs of a third-
order phase transition. Also it does not show a Tracy-Widom
distribution in the main region (also see Ref. [20]), which is
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FIG. 8. Empirical rate function �n(L) for the length of the LIS
of RWs. The two straight lines are obtained by power-law fits and
show the leading-order behavior of the rate function for each tail.
(For clarity not every data point is shown.)
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consistent with the expectation that these two properties do
occur together [17].

A comparison of this leading-order behavior to the be-
havior of the RP case, as visualized in Fig. 5, shows that
the tails decay differently. For a direct comparison of our
results consider Fig. 9. While the right-tail exponent is larger
in the RW case, the probability density decays slower (i.e.,
the empirical rate function increases slower). This apparent
contradiction is understandable when considering that the rate
function of the RP case grows much faster near the minimum
at 〈L〉 before it settles into the asymptotic behavior. The RW
case behaves exactly opposite, such that the branches left and
right of the minimum show opposite curvature in the two
cases. Generally, this leads to a distribution P(L) which is
much broader in the RW case, especially towards quite large
values of L.

IV. CONCLUSIONS

We obtain numerical data for the distribution of the
length of the longest increasing subsequence for two
cases of sequences of random numbers, namely, for RPs
and for one-dimensional RWs. By applying sophisticated
large-deviation algorithms, we are able to sample the
distributions over literally hundreds of decades in probability.
The case of RPs is already well studied analytically in the
literature, and we are able to confirm, to the best of our
knowledge, for the first time these analytical results. Since
our data are gathered for finite system sizes, we can observe
a rather fast convergence to the analytical results valid in
the n → ∞ limit. These results also show the validity and
convergence of our simulations. For the case of RWs we can

observe the leading-order behavior of the rate function far into
the tails. Also our data support the scaling assumption Eq. (13)
[20] for the whole distribution including the logarithmic term,
which is not present for weakly increasing subsequences in
RWs with ±1 steps [19]. This result could be used to guide
analytical work on this topic and to test future analytical
results. A direct comparison of the empirical rate functions
in the tails shows qualitatively very different behavior. While
the rate function of the RW seems to be a convex function,
the RP case consists, in principle, of two concave parts.

A possible future direction extending this work would be
an interpolation between the RP and RW case, where one
could observe the change of the exponents governing the rate
function. Since a set of distinct random numbers δ j drawn
uniformly from [−1, 1] should show the same statistics for the
longest increasing subsequence of a RP, we could introduce a
parameter c governing the correlation length. The sequence
would be constructed as Si = ∑i

j=max(0,i−c) δ j . For c = 0 this
would correspond to a RP and for c = n to a RW. In addition
to this simple type of correlation, one could study power-law
correlated random numbers or increments, leading possibly to
even more complicated behavior.

Furthermore, it is of interest to analyze the actual LIS
in particular with taking the degeneracy into account. For
this purpose one must use a dynamic programming approach,
which exhibits a running time of O(n2) instead of the O(n ln n)
complexity of the algorithm which obtains just the length of
the LIS. Nevertheless, the dynamic programming approach
would allow one to compare different LISs for every real-
ization of the sequence, whether they are rather similar or
possibly very different, depending on the type of sequence.
Also one could study the distribution of the LIS entropy with
similar large-deviation techniques as applied here. Further-
more, this would allow to measure a correlation between LIS
length and span in a statistical unbiased way, going beyond
the results shown in Fig. 3.
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