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Replica symmetry and replica symmetry breaking for the traveling salesperson problem
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We study the energy landscape of the traveling salesperson problem (TSP) using exact ground states and a
novel linear programming approach to generate excited states with closely defined properties. We look at four
different ensembles, notably the classic finite dimensional Euclidean TSP and the mean-field-like (1,2)-TSP,
which has its origin directly in the mapping of the Hamiltonian circuit problem on the TSP. Our data supports
previous conjectures that the Euclidean TSP does not show signatures of replica symmetry breaking neither in
two nor in higher dimension. On the other hand the (1,2)-TSP exhibits some signature which does not exclude
broken replica symmetry, making it a candidate for further studies in the future.
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I. INTRODUCTION

The concept of replica symmetry breaking (RSB) was
introduced in the context of spin glasses [1,2], where it has
a long history of debate to which models it applies [3]. RSB
is an assumption about the structure of the phase space (or
“energy landscape”), which leads to the correct results for the
Sherrington-Kirkpatrick (SK) spin glass [4]. RSB basically
means that the phase space is hierarchically structured such
that two configurations of very similar energy may be far away
from each other in the configuration space. The phase space
becomes complex.

The physics-inspired analysis of the phase-space structure
has also been applied to combinatorial optimization problems,
namely problems belonging to the class of nondeterministic
polynomial (NP)-hard [5–7] problems (or the corresponding
decision problems belonging to the class of NP-complete
problems). For NP-hard problems currently only algorithms
are known which exhibit a worst-case running time which
grows exponentially with system size. Examples of NP-hard
problems are satisfiability [8] and vertex cover [9]. Here,
ensembles are known where replica symmetry (RS) breaks at
some value of a control parameter [10–12]. This appears not
to be surprising to many researchers because intuitively a hard
optimization problem may correspond to a nontrivial energy
landscape. This prompted many attempts to distinguish easy
from hard instances or explore the energy landscape of such
problems [13–19].

One of the best-known NP-hard combinatorial optimiza-
tion problems is the traveling salesperson problem (TSP) [20].
Somewhat surprisingly, in contrast to the aforementioned
problems, only indications for RS have been found within
studies of some TSP ensembles so far [21–24]. Nevertheless,
for these analytical and numerical studies various approxi-
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mations had to be used, somehow questioning the previous
claims for RS.

In this work, by performing computer simulations [25]
via calculating numerically exact ground states [26] and ex-
citations, we confirm the previous results for these specific
ensembles. But on the other hand we show that there is at
least one ensemble also for the TSP where RSB cannot be ex-
cluded, namely the (1,2)-TSP ensemble [27]. In particular, in
contrast to previous numerical studies, which used heuristics
to generate tours near the optimum [23,24], we use an exact al-
gorithm to find the true optimum and very specific excitations.
This approach is facilitated by the combination of flexibility
and high performance (compared to other exact algorithms
for the TSP) of linear programming (LP) with branch and
cut. Combined with the general increase in computing power
and the improvement of algorithms for TSP optimization, it
enables us to simulate comparatively large instances.

II. MODELS

The traveling salesperson problem [28,29] is defined on
a complete weighted graph, where the vertices are usually
called cities and the symmetric edge weights ci j = c ji dis-
tances or costs. On this graph one searches for the shortest
cyclic path through all N cities, which is called tour and can be
represented by a set of edges T . An equivalent representation
is through a symmetric adjacency matrix {xi j} where xi j = 1
if city i is followed by city j on the tour and xi j = 0 otherwise.
The length of the tour, which we will also call energy, is thus

L =
∑

{i, j}∈T

ci j =
∑

i

∑
j<i

ci jxi j .

Note that an instance of the problem is completely encoded in
the distance matrix ci j .

To compare two tours T1 and T2, their distance or difference
d is defined as the number of edges, which are in T1 but not in
T2 [13],

d =
∑

{i, j}∈T1

1 − x(2)
i j ,

2470-0045/2019/100(3)/032135(8) 032135-1 ©2019 American Physical Society

https://orcid.org/0000-0002-8197-1372
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.032135&domain=pdf&date_stamp=2019-09-23
https://doi.org/10.1103/PhysRevE.100.032135


SCHAWE, JHA, AND HARTMANN PHYSICAL REVIEW E 100, 032135 (2019)

(a) (b) (c)

(d) (e) (f)

FIG. 1. (a) and (b) A configuration with N = 400 of the ETSP.
Left is the optimal tour, right the MaxDiff excitation with d = 129
difference to the optimum. (d) and (e) The optimal and excited tour
for an STSP realization. (c) and (f) The difference between the
optimum and the excitation of the respective instances; red edges
are removed, green are added for the excitation.

where x(2)
i j is the adjacency matrix corresponding to T2. Like

the link overlap for spin glasses is robust against the flipping
of compact clusters with a low domain-wall energy, this
observable is robust against partial reversals of the tour. If one
considered instead the order of the cities in the tour, roughly
analogous to the spin overlap used for spin glasses, this could
introduce a difference in the order of N by just changing two
links.

Here, we study four TSP ensembles to evaluate the influ-
ence of the quenched randomness on the complexity of the
solutions.

(1) First, the most intuitive and probably the most scruti-
nized [15,20,30–33] ensemble is the Euclidean TSP (ETSP).
Here a Poisson point process in a square determines the lo-
cations of the cities and the distance matrix is filled with their
Euclidean distances. We use periodic boundary conditions. An
example for an optimal tour in such a configuration is shown
in Fig. 1(a). It is straight forward to generalize this in higher
dimensions using a Poisson point process in a hypercube and
the corresponding Euclidean distances.

(2) The random link model (RLTSP) [13,34] is an approx-
imation of the ETSP, which disregards any correlations of
the entries in the distance matrix ci j and therefore does not
obey, e.g., the triangle inequality. For this approximation in
the statistical physics literature solutions were obtained under
the premise that replica symmetry holds based on the replica
method [21] and cavity method [24,34,35]. In this work we
study the ETSP and RLTSP ensembles in which the density
of the cities is constant, such that the average optimal tour
length Lo ∼ N [30], i.e., the energy is extensive. The random
link length is therefore drawn uniformly from [0, N].

(3) The (1, 2)-TSP is the result of the classical mapping of
the Hamilton circuit problem (HCP) onto the TSP [6]. The
HCP is whether a cycle visiting every vertex exactly once
exists on a given graph G. The mapping from HCP to TSP

is simply assigning the distance matrix as

ci j =
{

1, if i and j are adjacent in G,
2, otherwise.

A Hamiltonian cycle exists, iff the length of the optimal tour is
equal N . For simplicity sake, the ensemble we are looking at
is derived from an Erdős-Rényi graph (ER) [36] where edges
occur with probability p = 1/N , which results in an average
degree of 1. Note that both limiting cases p = 0 and p = 1
are trivial since every tour will be optimal with length 2N ,
respectively, N . p = 1/N was chosen since it is the percolation
threshold for the underlying graph ensemble, i.e., G exhibits
a forestlike structure and to form a cycle in the corresponding
TSP realization almost surely edges nonexisting in G, i.e.,
distance 2 in the TSP, need to be used.

(4) An additional ensemble that we look at is an Euclidean
TSP, where the cities are arranged on a square lattice with
lattice constant 1 (STSP). Every city is displaced by at most
1/N in a random direction to avoid degeneracy. An optimal
tour in such a configuration is shown in Fig. 1(d). While this
ensemble may appear arbitrary and trivial at first, because
it is very similar to a grid which is easy to solve, it is
actually rather nicely motivated. First, the constructions to
map the exact cover problem onto the ETSP [20,33] result
in instances where most cities lie on the sites of a square
lattice, though not every site is occupied. This mapping is the
usual way to show that even the ETSP is NP-hard. Second,
historically the “ts225” instance of the TSPLIB [37] with 225
cities was solved only in 1994—three years after the record
of the largest optimally solved nontrivial instance was set to
2392 cities and 10 years after its inclusion in the TSPLIB
[38]. The empirically hard ts225 instance consists of cities
on square lattice sites and equidistant cities on straight lines
between nearest neighbor sites. Since we want to look at an
easy to define ensemble, we propose the slightly disturbed
square lattice, which we suspect could show typical properties
of these square-lattice-like configurations. It turns out that
open boundary conditions lead to strong finite-size effects,
since overlaps between two arbitrary tours are coerced at
the boundary. Therefore, like for the ETSP, we use periodic
boundary conditions for the STSP ensemble.

The STSP is obviously a very specific subset of the ETSP.
The justification to expect a different behavior is that the typ-
ical ETSP instance might be diluted by entropically favored
instances with trivial solution space structure, but the solution
space structure of the STSP subset might look complex.
Subspaces in the problem domain which behave dramatically
different are quite common. For example, a subspace of the
spin glass configuration space are ferromagnets, which have a
trivial solution space structure, while general spin glasses—at
least in high dimensions—have complex ones.

III. METHODS

Like other studies on the solution space structure of differ-
ent optimization problems, we look at excitations [39–41]. To
test whether RSB is a possibility, we test a necessary criterion
introduced in the context of TSP by Mézard and Parisi in
Ref. [22]. A configuration is called quasioptimal if the relative
difference of its energy L∗ to the optimal energy Lo behaves
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as

L∗ − Lo

Lo
= O

(
1

N

)
. (1)

According to Ref. [22], in order for replica symmetry to be
broken, it is necessary that there exist quasioptimal configura-
tions, whose differences to the optimum behave as

d (T o, T ∗) = O(N ). (2)

This does not say anything about other configurations which
will have other distances to the optimum; there will be always
a distribution of distances to the optimum. This distribution
depends on the instances and on the system size, similar
to the distribution of overlaps in spin glasses [2]. Thus, for
the present analysis, it is not relevant whether this distribu-
tion of distances converges, or whether the mean converges
or whether in case of convergence they are self-averaging.
Intuitively Eq. (2) means that a finite, i.e., O(1), energy is
sufficient to find some change of a finite fraction, i.e., O(N ),
of the system [39]. If this criterion is not fulfilled, we will
conclude that RS holds.

But this criterion alone does not suffice. Furthermore, we
have to ensure that some kind of order exists in the ground
state. Consider, for example, a system, where every edge has
equal length. Its solution space structure is like a paramagnet,
i.e., trivial, since every tour is of identical length. On the other
hand, this system also fulfills the criterion Eq. (2).

While a random tour and the optimal tour in this degenerate
ensemble behave the same in every aspect, this is not true
for the (1, 2)-TSP, where a random tour has O(1) edges of
length one but an optimal tour has O(N ) edges of length one.
This distinguishes order from disorder. In more detail, our
measurements show the actual number of length one edges
for the (1, 2)-TSP is 0.4240(8)N , thus, corresponding to an
ordered ground state. We obtained this constant by using the
Beardwood-Halton-Hammersley constant β, which will be
scrutinized in the beginning of Sec. IV. For the (1, 2)-TSP
β is the mean length of the edges constituting the tour and
since all edges in the (1, 2)-TSP ensemble are of length 1
or 2, β − 1 is the fraction of length 2 edges in the optimal
tour. The ETSP shows a very similar behavior [42]. We will
further show that the STSP on the other hand, while fulfilling
the criterion Eq. (2), behaves still trivial and the fulfillment of
the criterion is caused by a high degeneracy.

Note that degeneracy alone does not mean that a solution
space structure is trivial, since the degenerate solutions may
be contained in one big cluster, at least in the thermodynamic
limit. Famous examples, where this is the case include the
two-dimensional Ising spin glass with ±1 couplings [43] and
the satisfiability problem in the range of few constraints [44].

Anyway, for the cases where we cannot rule out RSB, we
cannot reach a definitive conclusion since RSB is a more
complex phenomenon not only caught by one quantity of
interest. However, we can identify cases which might be
worthwhile to study in more detail to determine whether they
are RS or RSB, or exhibit a complex behavior in another way.

Going from measurable quantities to algorithms, to solve
numerically any instance of the TSP, the following integer

program, i.e., an LP with additional integer constraints Eq. (6),
can be used [45]:

minimize
∑

i

∑
j<i

ci jxi j, (3)

subject to
∑

j

xi j = 2 i = 1, 2, . . . , N (4)

∑
i∈S, j /∈S

xi j � 2 ∀S ⊂ V, (5)

xi j ∈ {0, 1}, (6)

where xi j is the searched for adjacency matrix defining the
tour, V is the set of all cities, and S a proper, nonempty subset
of V . Equation (3) minimizes the tour length, Eq. (4) ensures
that the number of incident edges into every city is two,
such that the salesperson enters every city once and leaves
it again. Equation (5) is the subtour elimination constraint
(SEC), which prevents the tour to fragment into multiple
not-connected subtours.

As a technical detail, we use fixed point data types for
the distances. This discretization means effectively that the
entries of the cost matrix are rounded and can therefore lead
to different results than exact Euclidean distances, however,
this is a fundamental problem of any computer simulation.
Tests with different precisions did not show any systematic
and notable influence on the mean values, such that we are
confident that no systematic error is introduced by this choice.
We use CONCORDE [46] to generate optimal tours, which
implements the LP from Eqs. (3) to (6) at its core but also
extends it with additional constraints and heuristics to speed
up the solution process.

Note that optima found with this method are not necessar-
ily drawn uniformly from all existing optima and we do not
perform unbiased ground-state sampling. However, most of
our ensembles are not degenerate anyway. And in the case of
the (1, 2)-TSP, the only ensemble with many optima studied
by us, we tested whether this possible bias has influence on
our results. Therefore we applied random perturbations on the
edge lengths to lift the degeneracy, which was tested on other
models to result in uniform, unbiased sampling of the optima
[47,48]. This procedure yielded within error bars the same
results as the degenerate ensemble, such that we are confident
that any possible bias of the optimum selection does not have
considerable influence on our results.

To construct the excitations T ∗, we modify the linear
program formulation using the obtained optimal tour T o.
This allows us to construct excitations with very specific
properties. Since we want to check the criterion Eqs. (1) and
(2), we construct a very specific integer program which fixes
Eq. (1) to be fulfilled and maximizes Eq. (2). If the problem is
RS, the result should show the criterion to be violated.

So we fix the allowed energy difference L∗ − Lo = ε to
a constant, which will lead to the desired relative energy
difference Eq. (1) if the energy is extensive. For this reason
our definitions of the ensembles are formulated in a way that
leads to extensive energy, i.e., 〈Lo〉 ∼ N . Within this excitation
energy window ε, the number of common edges with the
optimal tour T o needs to be minimized to maximize the
distance of the configurations. Thus replacing the objective
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with

minimize
∑

{i, j}∈T o

xi j, (7)

and adding the additional constraint,∑
i

∑
j<i

ci jxi j � Lo + ε, (8)

results in a suitable LP. We will call this LP MaxDiff. Tech-
nically, we used a custom implementation of the LP. We used
CPLEX [49] as the LP solver and for branch and cut. Two
exemplary solutions of this LP are visualized in Fig. 1 in
comparison to the optimal tours.

IV. RESULTS

We performed the calculation of optimum and excited tours
for the four ensembles ETSP, RLTSP, (1,2)-TSP, and STSP, for
various system sizes ranging from N = 64 to N = 1448 cities.
All results are averaged over a few hundred realizations of the
disorder.

Due to the hardness nature of the TSP and our exact so-
lution approach, some realizations of the largest system sizes
take far more computational resources than most realization
and could not be solved in reasonable time, respectively, mem-
ory. If we just omitted the unsolved instances from our results,
the results would be subject to selection bias since the hardest
realizations (for the used algorithm) are excluded from the re-
sults, which can lead to systematical errors—especially since
we are interested in properties linked to hardness. To ensure
that the results are not tainted by such systematic errors, we
perform a very conservative error estimation. The basic idea is
that we determine intervals of possible values for the means,
where unsolved instances enter with their minimum and max-
imum possible values, thus taking care of these systematic
errors. As we will see in the results section, these intervals
are very small, showing that the unsolved instances have no
significant effect, which is visible also when comparing fits
which used lower and upper possible values. Nevertheless, in
detail, there are two ways in which the optimization might
fail, which we treated differently. In the first case, already the
optimal tour, i.e., the ground state, cannot be found for a given
realization. System sizes for which this happened for at least
one realization are omitted completely from our analysis. In
other words, our data contains only system sizes where we
always found the optimum tour for all instances of this system
size and ensemble. In the second failure case, we found the
optimal tour Eq. (3) for an instance, but were not able to
determine the excitation Eq. (7). In this case we can often
use intermediate results of the branch-and-cut procedure to
estimate upper and lower bounds. The upper bound of d is
always available as the solution of the LP relaxation, i.e., the
solution of the LP defined by Eqs. (7), (4), (5), and (8) without
the integer constraints. In fact, the bound is even tighter, as
we can round down the relaxation solution to the next integer.
The lower bound of d is available if the branching procedure
produces an integer solution [50]; otherwise it is assumed
as the minimum possible value, i.e., d = 0. Similarly, we
can estimate bounds on the relative energy difference as it is
bounded by 0 and ε/Lo.
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FIG. 2. Finite-size Beardwood-Halton-Hammersley constant βN

measured at different system sizes N . Except for the STSP, all lines
show the mean value calculated from the results for N � 200. For
STSP the line is a fit to βN = β + aNb to extrapolate the asymptotic
β, which yields a = −2.62(5) and b = −0.971(4). The extrapolated
values for β are tabulated in Table I.

The range of sizes N we study for each TSP ensemble
is determined by the largest size for which we could cal-
culate always the optimum and obtain results with sensibly
small variations due to the inclusion of instances where the
excitation could not be obtained. We used as a criterion that
not more than one instance of the second failure kind occurs
which comes without an estimate for the lower bound. On the
other hand, failures of the second kind, coming with upper and
lower bounds are quite benign, since the bounds are typically
reasonably tight, such that data points are shown, for which,
for the largest sizes, up to 10% of the 100 (or 200 depending
on the ensemble) samples belong to this failure category. All
fits performed in the remainder of this study are done twice,
once using the upper bounds and once using the lower bounds.
The results are always compatible within the statistical errors.
All fit results shown in the following are obtained from using
the upper bound, since it is usually tighter than the lower
bound.

We start the presentation of the results with the behavior
of the optimum tour length. Here only data for system sizes
N is included where an optimum was found for all instances
of this size N . For the ETSP it is well known that the mean
optimal length 〈Lo〉 through N cities placed on a unit square
by a Poisson point process approaches a limit value for large
N , if scaled appropriately:

lim
N→∞

〈Lo〉/
√

N = β. (9)

This constant β is the Beardwood-Halton-Hammersley con-
stant [30] and some estimates for its value exist [31,51,52].
Similarly, such a constant should exist for the random link
model. For the pseudo-one-dimensional case, it is even known
exactly [53]. For the STSP and (1,2)-TSP the authors are not
aware of previous work, but it is easy to recognize that the op-
timal tour in the STSP traverses N horizontal or vertical edges,
which should have each a length of 1 for large N . Thus, we
expect the corresponding constant to be limN→∞ 〈Lo〉/N = 1.

Comparing these expectations to our data serves as a
crosscheck to establish some level of confidence in our data.
For the (1,2)-TSP case these are novel results. In Fig. 2 the

032135-4



REPLICA SYMMETRY AND REPLICA SYMMETRY … PHYSICAL REVIEW E 100, 032135 (2019)

TABLE I. Beardwood-Halton-Hammersley constants β for dif-
ferent ensembles of the TSP determined from our data and the current
best estimates for their actual values. Note that we only need to find
the ground state and not the excitation for this analysis such that
we can show larger system sizes than in later results. The literature
values marked by an asterisk * are values according to a high
dimensional limit conjecture for the RLTSP, which should coincide
in this limit with the ETSP [34]. Therefore, a perfect agreement for
the finite dimensions simulated is not expected.

β (measured) β (literature)

ETSP, 2 dim. 0.7112(6) 0.712403(7) [52]
ETSP, 8 dim. 0.8645(3) 0.8531* [34]
ETSP, 20 dim. 1.2218(2) 1.2093* [34]
RLTSP, 1 dim. 2.044(3) 2.0415.. [53]
STSP 1.0005(2) 1
(1, 2)-TSP (ER, p = 1

N ) 1.5760(8) –

rescaled mean optimal tour lengths βN are plotted. Generally
the finite-size effects are small, such that we determine esti-
mates for β simply as the average of all data points N � 200.
Except for the STSP this works reasonably well. Since the
STSP shows the largest finite-size effect, we use an offsetted
power law βN = β + aNb to extrapolate the measurements.
The results of this analysis are shown in Table I together
with the currently best known values for this constant. Since
we do not have a good model to extrapolate the values, the
given error bars are only statistical and do not account for
errors in the extrapolation. Considering this, our estimates are
reasonably close to the expectations.

Next, the results for the MaxDiff excitation simulations
for the two-dimensional ETSP are shown in Fig. 3. We
chose ε = 3.16 for ETSP in two dimensions, ε = 1 in higher
dimensions and ε = 30 for the RLTSP. Note that these choices
are motivated by the different typical optimal lengths of the
tours and chosen to minimize finite-size effects. That means ε

should be small enough to not allow every single edge to be
different, which would clamp the data points for every size to
d = 1. On the other hand ε should be large enough to allow
for all simulated system sizes some edges to be different.

However, the choice of ε should have no influence on the
principal result, and will lead mainly to a shift up or down
in the logarithmical scale. A more detailed analysis of the
influence of the value of ε is shown later for the (1, 2)-TSP.

We found a 1/N behavior of the relative energy difference
(inset) as required by Eq. (1). Nevertheless the difference d
of the tours also vanishes in the large N limit as a power law,
thus the behavior of Eq. (2) is not found. Therefore, to change
a finite fraction of an infinite system, a finite energy ε does
not suffice for this ensemble. Thus, the results do not show
the signature of replica symmetry breaking, hinting at a trivial
solution space structure. This is consistent with previous stud-
ies [21,23,24,34,35] using the RLTSP as an approximation for
the ETSP. They used, e.g., the cavity method to estimate some
properties and compared them to tours obtained by heuristics
(for smaller system sizes N) leading to the claim that the ETSP
is replica symmetric. Also our results actually for the RLTSP,
shown in Fig. 3, lead to the same conclusion and confirm the
previous results.
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FIG. 3. The relative difference d/N of the optimum and the
MaxDiff excitation decreases as a power law with the system size
N . Its exponent depends on the ensemble. For large N the difference
d/N vanishes which is a hint for replica symmetry and a trivial
solution space structure. The inset shows that the premise Eq. (1)
is fulfilled. The bounds of the value are visualized as filled boxes and
the statistical errors as error bars; note that both are always smaller
than the symbols. The smallness (hardly visible) of the boxes indicate
that the few instances where only bounds for the distance d could
be obtained have basically no influence as the relative difference
between upper and lower bound is always less than 2%. The exponent
and offset, which is always compatible with 0, are obtained by fits to
d
N = aNb + D∞ and shown in Table II.

For spin glasses, the energy landscape becomes com-
plex and exhibits many features of RSB in high enough
dimensions. Above the upper critical dimension the system
is believed to behave [54–57] like the mean-field SK model
[1,2], corresponding to RSB. This motivated us to investigate
the ETSP for high dimensions as well. Our results for the
eight-dimensional and 20-dimensional ETPS are also shown
in Fig. 3. Evidently, even for higher dimensions the same
behavior indicates that RS is present. Thus a simple increase
in dimensionality does apparently not change the behavior
regarding replica symmetry much. This is in strong contrast
to spin glasses.

Next, we will look at an ensemble which is closer to a
direct mapping from the Hamilton circuit, which is usually
used to prove the TSP NP-complete. The mapping creates
an instance of the (1, 2)-TSP. For three tested values of the
finite excitation energy ε ∈ {10, 20, 30}, we calculated the
difference between the optimal and excited tours d , shown in
Fig. 4.

First (see inset), the relative energy difference decreases
as 1/N as required by Eq. (1). The measured difference d
does not follow a pure power law, but seems to converge to
a nonzero offset. Extrapolating the difference for large N with
d
N = aNb + D∞ (cf. Ref. [39]) leads to offsets for each value
of ε, which are reasonably close to the most accurate value
we obtained D∞ = 0.645(2) and exponents close to b = −1.
All values are shown in Table II. Note that for small system
sizes N finite-size effects are visible, where ε is of the order
of the optimal length and the excitation can differ in every
single edge. Therefore, the difference is clamped at d/N = 1.
For larger system sizes N this does not seem to play a role
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FIG. 4. Statistics of the (1, 2)-TSP for a connectivity of
N p = 1. The MaxDiff constraints with the finite excitation energy
ε ∈ {10, 20, 30} are used for the three curves, respectively. The
distance of the excitation to the optimal tour is extrapolated with an
offsetted power law ansatz d

N = aNb + D∞. The fit parameters are
shown in Table II. All three result in a convergence to a finite D∞ for
large N , i.e., a finite fraction. The possibility of RSB can therefore
not be excluded. The inset shows the relative energy difference of the
optimum and the excitation, showing nearly a perfect 1/N form, as
required by the RSB criterion. The bounds of the value are visualized
as filled boxes and the statistical errors as error bars; note that both
are always smaller than the symbols. The best estimate, i.e., the upper
bound, is used for fits.

anymore. To reduce the influence of this finite-size effect, the
fits for larger ε disregard the small system sizes N < 128 for
ε = 30 and N < 64 for ε = 20. In particular, different values
of ε lead to consistent results. According to the criterion
Eq. (2) our results cannot exclude the possibility that replica
symmetry is actually broken for this ensemble.

To further test these results, we conducted simulations
above the percolation threshold, for p = 3/N , and below the
threshold for p = 1/2N . The results exhibit qualitatively the
same behavior (not shown), but with different values of the
asymptotic D∞. Apart from the limits p → 0 and p → 1,
where every tour is optimal, the precise structure of the graph
does not seem to have a critical influence on this result.

To exclude that the degeneracy has a special influence on
our results, we lift the degeneracy by adding a slight pertur-
bation on each edge. Therefore we scale the edge weights and

TABLE II. Values of the fit parameters extrapolating the behavior
of d/N . Interestingly all ensembles converging to a finite value of D∞

show an exponent close to b = −1.

b D∞ RS

ETSP, 2 dim. −0.32(8) 0.04(10) �
ETSP, 8 dim. −0.21(4) −0.18(9) �
ETSP, 20 dim. −0.27(3) −0.05(5) �
RLTSP, 1 dim. −0.336(12) −0.004(13) �
STSP, −1.5(5) 0.767(1) Degenerate
(1, 2)-TSP, ε = 10 −0.82(2) 0.636(2) RSB possible
(1, 2)-TSP, ε = 20 −0.93(3) 0.645(2) RSB possible
(1, 2)-TSP, ε = 30 −0.97(4) 0.648(3) RSB possible
ci j = 1 1 Degenerate

0.70

0.72

0.74

0.76

0.78

64 128 256 512 1024

STSP

10−3

10−2

10−1

64 256 1024

∼ N −1.00

d
/N

N

(L
∗
−

L
o
)/

L
o

FIG. 5. For the STSP the relative difference d/N converges to a
finite value, which means that finite energy is sufficient to change a
macroscopic part of the system. The value it converges to is estimated
by an offsetted power-law ansatz d

N = aNb + D∞ and fulfills the
criterion Eq. (2). The exponent and offset are shown in Table II.
The inset shows that Eq. (1) is fulfilled. The bounds of the value
are visualized as filled boxes and the statistical errors as error bars;
note that the bounds are always smaller than the symbols. The best
estimate, i.e., the upper bound, is used for fits.

ε by 105 and add a random disturbance U (−10, 10) to each
edge. Except for a vanishing degeneracy, this procedure also
does not change the results beyond statistical errors, which are
indicated as additional black error bars for a selection of data
points for ε = 30 in Fig. 4.

The last ensemble we study is the STSP, which is a very
special subspace of the ETSP configuration space. The STSP,
where cities are placed on a square lattice and are displaced
by a distance proportional to 1/N , does show a qualitatively
very different behavior to the ETSP. In contrast to the ETSP
case, the difference does not follow a pure power law, but
seems to converge to a nonzero offset. But different than the
(1, 2)-TSP case, it approaches the limiting value from below.
In Fig. 5 this behavior is fitted with an offsetted power law
d
N = aNb + D∞. While according to criterion Eq. (2) this is
not compatible with the trivial behavior of RS, it is rather
easy to see that this is an effect caused by high degeneracy.
In fact, large realizations basically look like a square lattice,
where many tours which do not use diagonals have almost the
same lengths. This is compatible with the value of β which
is apparently 1 (cf. Table I). The slight displacements avoid
perfect degeneration, but are not strong enough to destroy this
effect and thus no ordered phase can be observed. Thus, the
system behaves like a paramagnet, where many solutions are
indistinguishably close in energy. Note that a displacement by
a fixed amount, e.g., 5% of the lattice constant, does lead to
the same trivial behavior as the ETSP before (not shown). The
same is true for a diluted square lattice, where a fixed fraction
of sites is removed (also not shown). We therefore conclude
that the energy landscape is most likely trivial.

V. CONCLUSION

To summarize, we studied multiple ensembles of the TSP
by applying sophisticated exact combinatorial optimization
algorithms in extensive simulations. As suspected before,
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we find evidence for the replica symmetry of the Euclidean
TSP and the related random link model. Interestingly, we
find these results also in high space dimensions, in contrast
to spin glasses where RSB is believed to appear above the
upper critical dimension du = 6. Our results strengthen the
conjecture that replica symmetry holds for these ensembles,
which is often used to tackle this problem from a statistical
mechanics point of view.

On the other hand, for the (1,2)-TSP, inspired by the clas-
sical mapping of the Hamilton circuit to the TSP, we cannot
exclude replica symmetry breaking. Thus, we provide the first
evidence for a complex phase-space behavior of this classical
NP-hard optimization problem. This should motivate further
studies to find out whether the solution space is clustered and
whether replica symmetry breaking might actually be present.

For future work, especially for the degenerate case of
the (1,2)-TSP, it would be interesting to study the solution
space structure with a focus on clustering. One could define
a neighborhood relationship in the configuration space, e.g.,
k-opt moves [58], and search for clusters of configurations
which can be reached from each other by paths traversing only
neighboring instances [8,59–61].

The linear programming approach we use is very general
and can be applied to a large range of problems. Since for
many problems mappings to integer programs are already
known and it is quite straight forward to formulate additional
constraints enforcing some specific excitations, this technique
could be quite generally used to explore a very specific range
of the energy landscape of many problems.
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