

Collective effects of the cost of opinion change

Hendrik Schawe Laura Hernández

December 3, 2020

Opinion dynamics

evolution of opinions in a society of agents with time

Social influence

agents communicate and their opinion become more similar

► Homophily

interaction happens between similar agents

Opinion dynamics

evolution of opinions in a society of agents with time

Social influence

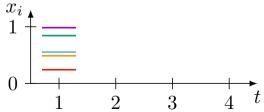
agents communicate and their opinion become more similar

► Homophily

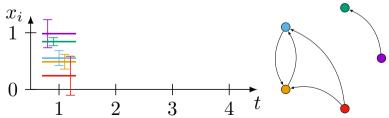
interaction happens between similar agents

Changing opinion (and therefore behavior) is not free

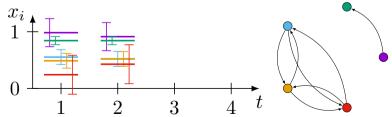
- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus



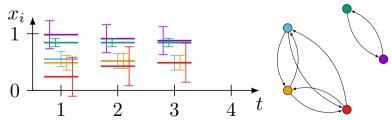
- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- ▶ interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- ▶ possible stationary states: *consensus* or *fragmentation*
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus



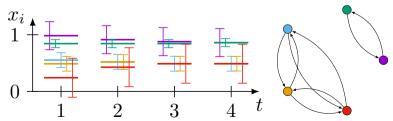
- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus



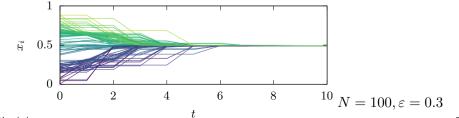
- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus
- $\blacktriangleright\,$ sharp threshold to consensus at $\varepsilon_i\approx 0.2$



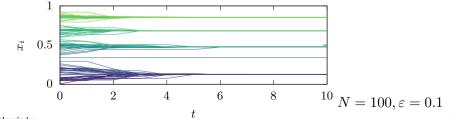
- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus
- $\blacktriangleright\,$ sharp threshold to consensus at $\varepsilon_i\approx 0.2$

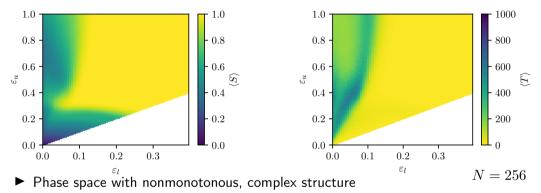


- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus

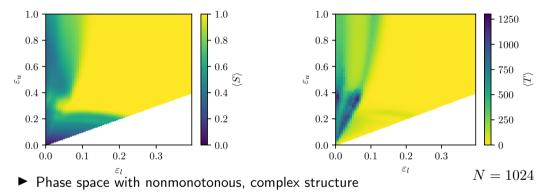


- \blacktriangleright N agents
- each with opinions $x_i \in [0,1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- interact with agent j, if $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus

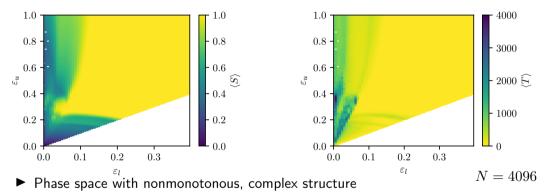




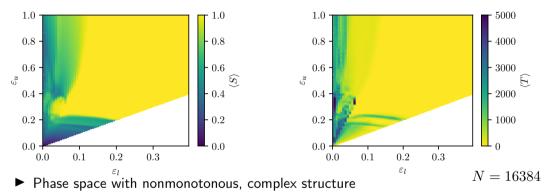
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- ► All effects are stronger with larger systems



- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- ► All effects are stronger with larger systems



- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- ► All effects are stronger with larger systems



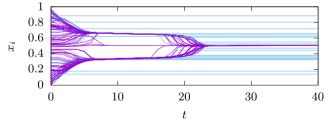
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- ► All effects are stronger with larger systems

Adding Cost

• assign resources $c_i(0)$ to each agent

• changes cost proportional to opinion change $c_i(t+1) = c_i(t) - \eta |x_i(t) - x_i(t+1)|$

- opinions can not change without resources and *freeze*
- ▶ is there a critical cost?



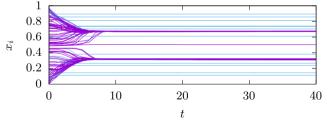
N=16384 (100 agents shown), $(\varepsilon_l,\varepsilon_u)=(0.1,0.3),~\eta=0.7$

Adding Cost

• assign resources $c_i(0)$ to each agent

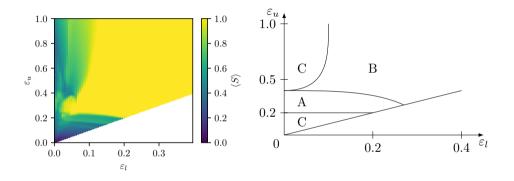
• changes cost proportional to opinion change $c_i(t+1) = c_i(t) - \eta |x_i(t) - x_i(t+1)|$

- opinions can not change without resources and *freeze*
- ▶ is there a critical cost?



N=16384 (100 agents shown), $(\varepsilon_l,\varepsilon_u)=(0.1,0.3),~\eta=1.1$

Different behavior in different parts of the $\varepsilon_l, \varepsilon_u$ space

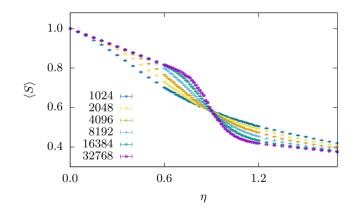


A. Phase transition from consensus to fragmentation at critical $\boldsymbol{\eta}$

- B. Always consensus, $\langle S \rangle$ shrinks linear in η
- C. Never consensus

Region A: Second order phase transition

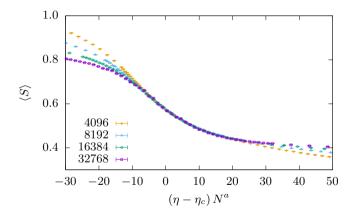
Finite-size scaling analysis



Collective effects of the cost of opinion change, Schawe, Hernández, 2020

Region A: Second order phase transition

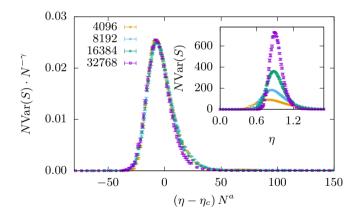
Finite-size scaling analysis



Collective effects of the cost of opinion change, Schawe, Hernández, 2020

Region A: Second order phase transition

Finite-size scaling analysis



Collective effects of the cost of opinion change, Schawe, Hernández, 2020

Region A: Hints for universality

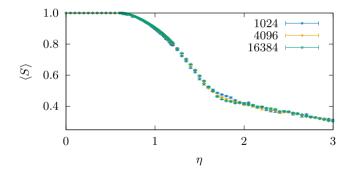
The exponent is robust for many different points within region A and ways to choose c_i

	$(\varepsilon_l, \varepsilon_u)$	η_c	a
$c_i(0) \in U[0,1]$	(0.10, 0.30)	0.909(6)	0.45(4)
$c_i(0) \in U[0,1]$	(0.05, 0.30)	1.32(1)	0.42(5)
$c_i(0) \in U[0,1]$	(0.25, 0.25)	0.80(2)	0.41(6)
$c_i(0)\inhalf ext{-}Gaussian$	(0.10, 0.30)	0.73(1)	0.43(2)
$c_i \propto \varepsilon_i$	(0.10, 0.30)	0.63(1)	0.43(1)
$c_i(0) \in U[0.3, 0.7]$	(0.10, 0.30)	_	0

Region A: Hints for universality

The exponent is robust for many different points within region A and ways to choose c_i

But the phase transition vanishes if there are no very poor agents



$c_i(0) \in U[0.3, 0.7], (\varepsilon_l, \varepsilon_u) = (0.1, 0.3)$

- Simple model exhibiting complex behavior
- Introducing costs leads to a continuous phase transition from consensus to fragmentation
- Of relevance for society(?): If every agent can change its opinion to some degree, the sudden transition changes to a smooth crossover.

- Simple model exhibiting complex behavior
- Introducing costs leads to a continuous phase transition from consensus to fragmentation
- Of relevance for society(?): If every agent can change its opinion to some degree, the sudden transition changes to a smooth crossover.

Outlook

The 'anyone can interact with everyone' seems unrealistic. Does the behavior change for social networks?

- Simple model exhibiting complex behavior
- Introducing costs leads to a continuous phase transition from consensus to fragmentation
- Of relevance for society(?): If every agent can change its opinion to some degree, the sudden transition changes to a smooth crossover.

Outlook

The 'anyone can interact with everyone' seems unrealistic. Does the behavior change for social networks? **Spoiler:** Yes, of course.

- Simple model exhibiting complex behavior
- Introducing costs leads to a continuous phase transition from consensus to fragmentation
- Of relevance for society(?): If every agent can change its opinion to some degree, the sudden transition changes to a smooth crossover.

Outlook

The 'anyone can interact with everyone' seems unrealistic. Does the behavior change for social networks? **Spoiler:** Yes, of course. But in an unexpected way!



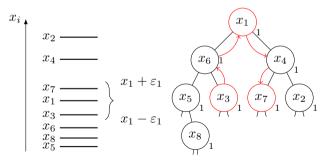
Appendix: Bonus Slides

What is the problem when simulating? Introducing a faster algorithm.

- ▶ At each time step each agent has to average over all neighbors $\Rightarrow O(N^2)$
- Introducing new algorithm
 - It is only necessary to touch the neighbors, which are far fewer for low ε_i
 - Converged clusters look for another agent like a single agent with high weight
- ▶ allows us to gather good statistics for systems two orders of magnitude larger (N = 131072) than what is typically studied

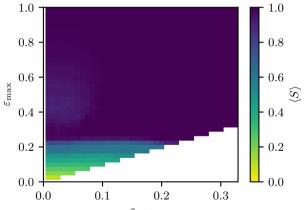
Introducing a faster algorithm.

- Save all opinions in the system in a tree
- \blacktriangleright to average the neighbors of agent i
 - ▶ find the smallest opinion $x_j \ge x_i \varepsilon_i$ in $\mathcal{O}(\log(N))$
 - ▶ traverse the tree in order and stop averaging on encountering $x_j \ge x_i + \varepsilon_i$
 - if a value x_j occurs more than once in the tree, assign it a weight



Bounded power law

$$p(\varepsilon) = c\varepsilon^{-\gamma}$$

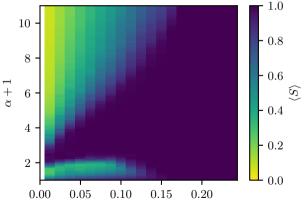


 ε_{\min}

JNIVERSITÉ Schawe, Hernández

Pareto

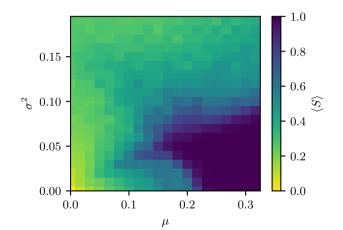
$$p(\varepsilon) = \frac{\alpha x_{\min}^{\alpha}}{x^{\alpha+1}}$$



JNIVERSITÉ Schawe, Hernández

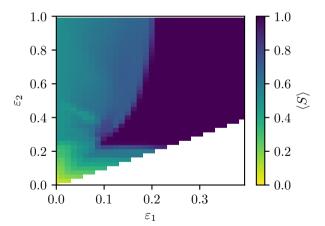
 ε_{\min}

Gaussian



Bimodal

$$p(\varepsilon) = \delta(\varepsilon - \varepsilon_1) + \delta(\varepsilon - \varepsilon_2)$$



JNIVERSITÉ Schawe, Hernández

Mean Dynamics

