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Introduction

I Opinion dynamics

evolution of opinions in a society of agents with time

I Social influence

agents communicate and their opinion become more similar

I Bounded confidence

very dissimilar agents do not have influence

Can we observe complex emergent behavior?

Schawe, Hernández 1/7



Hegselmann-Krause bounded confidence model

I N agents

I each with opinions xi ∈ [0, 1]

I each with confidence εi ∈ [0, 1]

I neighbors are similar agents j, with |xi − xj | ≤ εi
I compromise with your neighbors xi(t+ 1) = 1

|N |
∑

j∈N xj(t)

I possible stationary states: consensus or fragmentation

I measure mean size of largest cluster 〈S〉 to detect consensus
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For which εi do we expect consensus?

I εi = ε & 0.2 always consensus (for large N) [1]

I larger εi typically lead faster to consensus

Which influence has heterogeneity in εi?

I bimodal εi ∈ {ε1, ε2} for small systems or related models,
suggest complex behavior

I Will this be stronger for stronger inhomogeneity
εi ∈ U(εl, εu)?

I Will it be preserved for large N?

[1] Hegselmann, Krause, 2002
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Exploring the Landscape
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I Phase space with nonmonotonous, complex structure

I Consensus where mean confidence ε < 0.2

I Surprising: Increasing confidence εu ⇒ loss of consensus

I All effects are stronger with larger systems
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Looking closer at the reentrant phase

I εi ∈ [0.05, εu]

I increasing upper bound
→ more confident agents

I Two sharp flanks, getting
sharper for larger systems

I Variance diverges at the
flanks

I Phase transition to
consensus and out of
consensus
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How do confident agents destroy consensus?
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I local clusters
develop slowly and
stabilize out of
range →
fragmentation

I there are (almost)
always 2 local
clusters, which
develop slowly

I attraction via
moderate agents
interacting with a
small central
cluster

I central cluster
attracts confident
agents very fast

I skeptic agents are
left behind

I leads to
fragmentation of
the central cluster
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Conclusions

I heterogeneity facilitates consensus
I surprising: increasing the confidence can reduce the consensus
I read more: arxiv:2001.06877

Outlook So, does heterogeneity always lead to more consensus
in society?
Well, not necessarily.
introduction of a small cost:
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What is the problem when simulating? Introducing a faster
algorithm.

I At each time step each agent has to average over all
neighbors ⇒ O(N2)

I Introducing new algorithm
I It is only necessary to touch the neighbors, which are far fewer

for low εi
I Converged clusters look for another agent like a single agent

with high weight

I allows us to gather good statistics for systems two orders of
magnitude larger (N = 131072) than what is typically studied
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Introducing a faster algorithm.

I Save all opinions in the system in a tree
I to average the neighbors of agent i

I find the smallest opinion xj ≥ xi − εi in O(log(N))
I traverse the tree in order and stop averaging on encountering

xj ≥ xi + εi
I if a value xj occurs more than once in the tree, assign it a

weight

xi
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What about other distributions of εi?

Bounded power law
p(ε) = cε−γ
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What about other distributions of εi?

Pareto

p(ε) =
αxαmin

xα+1
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What about other distributions of εi?

Gaussian
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What about other distributions of εi?

Bimodal
p(ε) = δ(ε− ε1) + δ(ε− ε2)
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Mean Dynamics
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