

Surprising Effects of Inhomogeneity on Opinion Dynamics

Hendrik Schawe Laura Hernández

March 19, 2020

Introduction

Opinion dynamics

evolution of opinions in a society of agents with time

Social influence

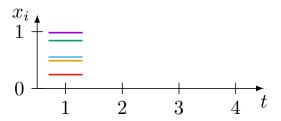
agents communicate and their opinion become more similar

Bounded confidence

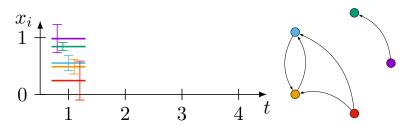
very dissimilar agents do not have influence

Can we observe complex emergent behavior?

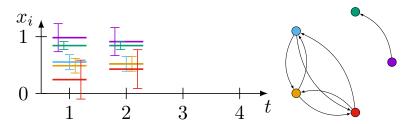
- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- each with confidence $\varepsilon_i \in [0, 1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- measure mean size of largest cluster $\langle S \rangle$ to detect consensus



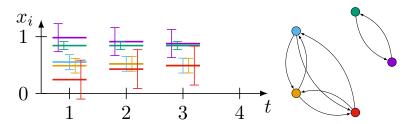
- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- ▶ each with confidence $\varepsilon_i \in [0,1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- measure mean size of largest cluster $\langle S \rangle$ to detect consensus



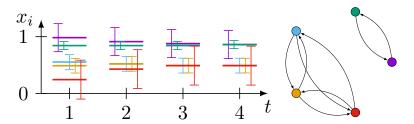
- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- each with confidence $\varepsilon_i \in [0, 1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- measure mean size of largest cluster $\langle S \rangle$ to detect consensus



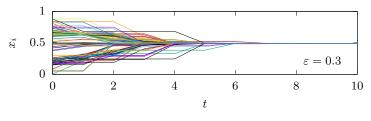
- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- measure mean size of largest cluster $\langle S \rangle$ to detect consensus



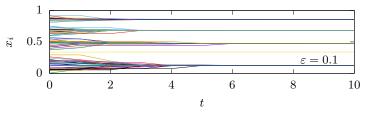
- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- ▶ each with confidence $\varepsilon_i \in [0, 1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- measure mean size of largest cluster $\langle S \rangle$ to detect consensus



- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- each with confidence $\varepsilon_i \in [0,1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- measure mean size of largest cluster $\langle S \rangle$ to detect consensus



- \blacktriangleright N agents
- each with opinions $x_i \in [0, 1]$
- each with confidence $\varepsilon_i \in [0,1]$
- neighbors are similar agents j, with $|x_i x_j| \le \varepsilon_i$
- compromise with your neighbors $x_i(t+1) = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} x_j(t)$
- possible stationary states: consensus or fragmentation
- \blacktriangleright measure mean size of largest cluster $\langle S \rangle$ to detect consensus



For which ε_i do we expect consensus?

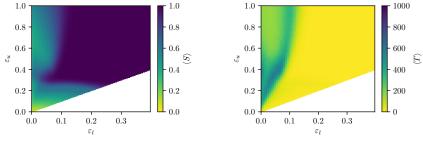
• $\varepsilon_i = \varepsilon \gtrsim 0.2$ always consensus (for large N) [1]

• larger ε_i typically lead faster to consensus

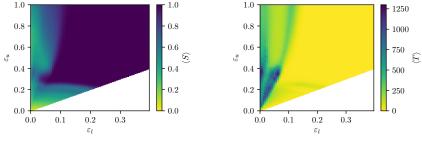
Which influence has heterogeneity in ε_i ?

- ▶ bimodal \(\varepsilon_i \in \{\varepsilon_1, \varepsilon_2\}\) for small systems or related models, suggest complex behavior
- Will this be stronger for stronger inhomogeneity $\varepsilon_i \in U(\varepsilon_l, \varepsilon_u)$?
- Will it be preserved for large N?

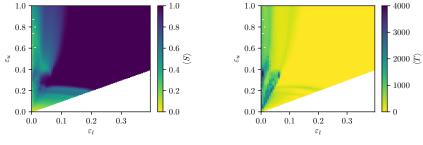
[1] Hegselmann, Krause, 2002



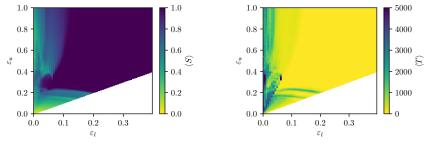
- Phase space with nonmonotonous, complex structure
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- All effects are stronger with larger systems



- Phase space with nonmonotonous, complex structure
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- All effects are stronger with larger systems



- Phase space with nonmonotonous, complex structure
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- All effects are stronger with larger systems



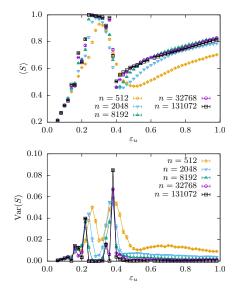
- Phase space with nonmonotonous, complex structure
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- All effects are stronger with larger systems



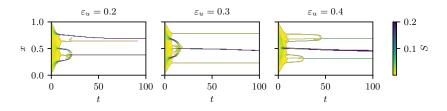
- Phase space with nonmonotonous, complex structure
- Consensus where mean confidence $\varepsilon < 0.2$
- Surprising: Increasing confidence $\varepsilon_u \Rightarrow$ loss of consensus
- All effects are stronger with larger systems

Looking closer at the reentrant phase

- $\blacktriangleright \ \varepsilon_i \in [0.05, \varepsilon_u]$
- ► increasing upper bound → more confident agents
- Two sharp flanks, getting sharper for larger systems
- Variance diverges at the flanks
- Phase transition to consensus and out of consensus



How do confident agents destroy consensus?



- ► local clusters develop slowly and stabilize out of range → fragmentation
- there are (almost) always 2 local clusters, which develop slowly
- attraction via moderate agents interacting with a small central cluster

- central cluster attracts confident agents very fast
- skeptic agents are left behind
- leads to fragmentation of the central cluster

Conclusions

- heterogeneity facilitates consensus
- surprising: increasing the confidence can reduce the consensus
- read more: arxiv:2001.06877

Conclusions

- heterogeneity facilitates consensus
- surprising: increasing the confidence can reduce the consensus
- ▶ read more: arxiv:2001.06877

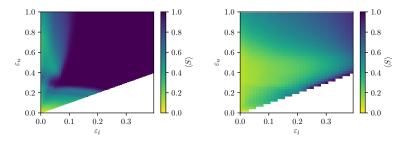
Outlook So, does heterogeneity always lead to more consensus in society?

Conclusions

- heterogeneity facilitates consensus
- surprising: increasing the confidence can reduce the consensus
- ▶ read more: arxiv:2001.06877

Outlook So, does heterogeneity always lead to more consensus in society?

Well, not necessarily. introduction of a small cost:

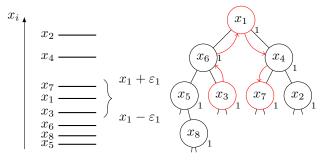


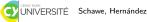
What is the problem when simulating? Introducing a faster algorithm.

- \blacktriangleright At each time step each agent has to average over all neighbors $\Rightarrow \mathcal{O}(N^2)$
- Introducing new algorithm
 - \blacktriangleright It is only necessary to touch the neighbors, which are far fewer for low ε_i
 - Converged clusters look for another agent like a single agent with high weight
- ▶ allows us to gather good statistics for systems two orders of magnitude larger (N = 131072) than what is typically studied

Introducing a faster algorithm.

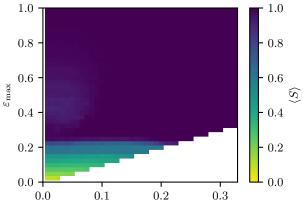
- Save all opinions in the system in a tree
- \blacktriangleright to average the neighbors of agent i
 - ▶ find the smallest opinion $x_j \ge x_i \varepsilon_i$ in $\mathcal{O}(\log(N))$
 - ► traverse the tree in order and stop averaging on encountering x_i ≥ x_i + ε_i
 - ▶ if a value x_j occurs more than once in the tree, assign it a weight



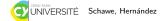


Bounded power law

$$p(\varepsilon) = c\varepsilon^{-\gamma}$$

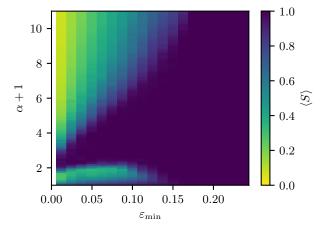


 ε_{\min}

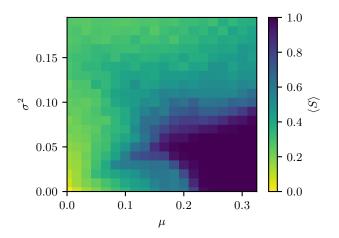


Pareto

$$p(\varepsilon) = \frac{\alpha x_{\min}^{\alpha}}{x^{\alpha+1}}$$

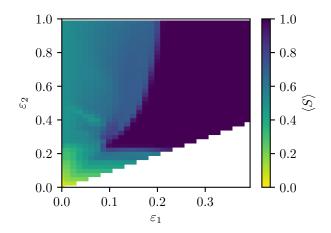


Gaussian



Bimodal

$$p(\varepsilon) = \delta(\varepsilon - \varepsilon_1) + \delta(\varepsilon - \varepsilon_2)$$



Mean Dynamics

