The entropy of the longest increasing subsequences: typical and extreme sequences Phil Krabbe¹ Hendrik Schawe^{1,2} Alexander K. Hartmann¹ $^1\mathrm{Carl}$ von Ossietzky Universität Oldenburg $^2\mathrm{CY}$ Cergy Paris Université March 18, 2020 #### Outline The Model: LIS COunting LIS efficiently Distribution of the Entropy Sampling the Far Tails "Mark the most elements, such that all marked elements left of a marked element are smaller (or equal) than it" "Mark the most elements, such that all marked elements left of a marked element are smaller (or equal) than it" "Mark the most elements, such that all marked elements left of a marked element are smaller (or equal) than it" $7 \quad 9 \quad 4 \quad 1 \quad 0 \quad 6 \quad 3 \quad 8 \quad 5 \quad 2$ "Mark the most elements, such that all marked elements left of a marked element are smaller (or equal) than it" "Mark the most elements, such that all marked elements left of a marked element are smaller (or equal) than it" #### With a permutation of length n: - ▶ What is the expected length of the LIS? $\Rightarrow 2\sqrt{n}$ [1, 2, 3, 4] - ► Why is this interesting? - ► random matrix theory [4] - ► surface growth (KPZ) [5, 6] - applications in computer science and bioinformatics - ▶ How many possibilities are there? $\Rightarrow \mathcal{O}(\exp(n))$ [7] ^[1] SM Ulam (1961); [2] K Johansson (1998); [3] J Deuschel, O Zeitouni (1999); [4] J Baik, P Deift, K Johansson (1999); [5] M Prähofer, H Spohn (2000); [6] SN Majumdar, S Nechaev (2004); [7] JM Hammersley (1972) Number of different LIS grows exponentially \Rightarrow We can not just enumerate, we have to count cleverly. 7 7 9 4 1 0 6 3 8 5 2 Number of different LIS grows exponentially \Rightarrow We can not just enumerate, we have to count cleverly. 7 9 4 1 0 6 3 8 5 2 Number of different LIS grows exponentially \Rightarrow We can not just enumerate, we have to count cleverly. $7 \quad 9 \quad 4 \quad 1 \quad 0 \quad 6 \quad 3 \quad 8 \quad 5 \quad 2$ Number of different LIS grows exponentially \Rightarrow We can not just enumerate, we have to count cleverly. Number of different LIS grows exponentially \Rightarrow We can not just enumerate, we have to count cleverly. Number of different LIS grows exponentially \Rightarrow We can not just enumerate, we have to count cleverly. | | | _ | | | _ | | _ | | | |---|---|---|--------------|---|------------|---|---------|------------------|---| | 7 | 9 | 4 | 1 | 0 | \bigcirc | 3 | 8 |) 5 | 2 | | 7 | 9 | 4 | \bigcirc 1 | 0 | 6 | 3 | 8 |) 5 | 2 | | 7 | 9 | 4 | 1 | 0 | 6 | 3 | 8 |) 5 | 2 | | 7 | 9 | 4 | \bigcirc 1 | 0 | 6 | 3 |) (8) |) 5 | 2 | | 7 | 9 | 4 | 1 | 0 | 6 | 3 |) (8) |) 5 | 2 | | 7 | 9 | 4 | \bigcirc 1 | 0 | 6 | 3 | 8 | $\bigcirc 5$ | 2 | | 7 | 9 | 4 | 1 | 0 | 6 | 3 | 8 | $\overline{(5)}$ | 2 | | | | | | _ | | | | | | | | | | | | | | | | | #### Distribution of the Entropy #### Distribution of the Entropy $$\langle S \rangle \approx 0.347 \sqrt{n}$$ $$\sigma \approx 0.49 \sqrt[4]{n}$$ #### Markov Chain Monte Carlo for the Far Tails - lacktriangle treat it as a canonical ensemble, i.e., weights $\sim e^{-E/\Theta}$ - ightharpoonup artificial temperature Θ for the disorder (ε) - ▶ Markov chain of realizations $\varepsilon = (\varepsilon_1, .., \varepsilon_N)$ - ► accept change with probability $$p_{\rm acc} = \min\left\{1, e^{-\Delta E_0/\Theta}\right\}$$ #### Markov Chain Monte Carlo for the Far Tails ### Full Distribution of the Entropy Deviations from Gaussians in the far tail # Full Distribution of the Entropy Collapse of the far tail onto a rate function $\sim n^2$ ### Are Length and Entropy correlated? #### Conclusions - ► For Permutations - entropy scales as $S \approx \exp(0.347\sqrt{N})$ - entropy distribution is well approximated by a Gaussian scaling form - ► far tails decay faster than Gaussian - ▶ hints for an unusual rate function