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Longest Increasing Subsequence (LIS)

“Mark the most elements, such that all marked elements left of a
marked element are smaller (or equal) than it"
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Longest Increasing Subsequence (LIS)

“Mark the most elements, such that all marked elements left of a
marked element are smaller (or equal) than it"
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Longest Increasing Subsequence (LIS)

“Mark the most elements, such that all marked elements left of a
marked element are smaller (or equal) than it"

With a permutation of length n:
» What is the expected length of the LIS? = 2\/n [1, 2, 3, 4]
» Why is this interesting?

» random matrix theory [4]
» surface growth (KPZ) [5, 6]
» applications in computer science and bioinformatics

» How many possibilities are there? = O(exp(n)) [7]

[1] SM Ulam (1961); [2] K Johansson (1998); [3] J Deuschel, O Zeitouni (1999); [4] J
Baik, P Deift, K Johansson (1999); [5] M Prahofer, H Spohn (2000); [6] SN
Majumdar, S Nechaev (2004); [7] JM Hammersley (1972)
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Counting Longest Increasing Subsequences

Number of different LIS grows exponentially
= We can not just enumerate, we have to count cleverly.
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Counting Longest Increasing Subsequences
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Counting Longest Increasing Subsequences

Number of different LIS grows exponentially
= We can not just enumerate, we have to count cleverly.
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Counting Longest Increasing Subsequences

Number of different LIS grows exponentially
= We can not just enumerate, we have to count cleverly.
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Distribution of the Entropy
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Distribution of the Entropy
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Markov Chain Monte Carlo for the Far Tails

> treat it as a canonical ensemble, i.e., weights ~ e~ £/©

» artificial temperature © for the disorder (g)

» Markov chain of realizations € = (¢1, ..,en)

P accept change with probability

Pacc = Min {1, e*AEO/@}
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Markov Chain Monte Carlo for the Far Tails
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Full Distribution of the Entropy
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Deviations from Gaussians in the far tail
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Full Distribution of the Entropy

Collapse of the far tail onto a rate function ~ n
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Are Length and Entropy correlated?
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Conclusions

» For Permutations

> entropy scales as S ~ exp(0.347v/N)

» entropy distribution is well approximated by a Gaussian scaling
form

» far tails decay faster than Gaussian

» hints for an unusual rate function
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