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1. Introduction

The computing capabilities of modern computers enable researchers to collect and

analyze vast amounts of data. The prime example for this fact is the LHC, where

petabytes of particle collision data are collected, processed and discarded or kept

every second [4]. But computers are not only able to process measured data, but

also to generate data by simulations of, e.g., statistical systems, where the rules for

each subsystem are well defined but the behavior of the whole system is not easy to

predict because of the nontrivial interactions of the subsystems. For those systems

there often exists no analytic solutions or only for very simplified or special cases.

But one can simulate all the interactions of the subsystems and observe the behav-

ior of the whole system using computational experiments. For example one can

examine phase transitions, which are defined by the abrupt change of an observ-

able, e.g., the change of the density of water near boiling, which is liquid at T < Tc

and gaseous at T > Tc. Or the change of the magnetization of a ferromagnet near

the Curie temperature, which is ferromagnetic at T < Tc and paramagnetic at

T > Tc. This can be observed by heating some refrigerator magnet by a candle –

after this treatment it will no longer stick on the refrigerator. Different phases of

a material and the transitions between them were always of greatest interest. The

ancient Greek thought that everything consists of fire, water, air and earth, which

are the archetypes of phases. Still phase transitions are important phenomenons,

because they are ubiquitious. The understanding allows applications from the re-

frigerator to shatter resistant mobile phone glass [30]. There are different kinds of

phase transitions which are distinguished by the behavior of their order parameter

and characterized by a set of critical exponents [33]. If it shows a discontinuity at

the phase transition, it is a first order phase transition, e.g. Water at boiling. A

second order phase transition is characterized by a continuous transition without

discontinuities of the order parameter.

One of the simplest models with a second order phase transition is the Ising model

[9] in d ≥ 2 dimensions. This is a simple model of a ferromagnet and will be

explained in more detail in Sec. 2.1. It is analytically solved in two dimensions on

some regular lattices [24] [31]. In this thesis its behavior near the critical tempera-

ture – also called Curie temperature – and the behavior of the critical temperature

itself on some irregular lattices corresponding to proximity graphs (see Sec. 2.2)

will be examined using the Monte Carlo simulations described in Sec. 3.2.

Proximity graphs are canditates for ad-hoc networks. As an example of an ad-hoc

network take a wifi network without central devices, but the every participant (e.g.

a laptop) works as a relay to get a data package to its destination. To minimize

the needed energy the packages will be routed over small distances from one node

to another. This behavior is well mapped by proximity graphs. They establish a
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lattice by connecting sites which are ”near” to each other. The exact definition of

”near” is dependend on the proximity graph.

Because the Ising model on a regular square lattice is well understood, the here

investigated irregular lattices will be constructed starting from a square lattice and

displacing the sites governed by an parameter σ. Then the influence of σ on the

critical temperature will be analyzed. A crossover of the critical temperature from

the square lattice to the corresponding proximity graph is expected.

Unfortunately the memory of any computer is small in comparison to what would

be needed for a simulation of a system in the thermodynamic limit. So only a

very small number of elementary subsystems can be simulated in comparison to

the actual number of elementary subsystems of the system in nature. This leads

to deviations from the real behavior of the system in the thermodynamic limit.

These deviations are called finite size effects and in Sec. 4.3 will be discussed how

to manage them.

Note that in the scope of this thesis the Boltzmann constant is kB = 1 for the sake

of simplicity.

2. Model

2.1. The Disordered Ising Model

The examined model is a 2D Ising model. The most common definition of the Ising

model, to which will be referred to as the square lattice Ising model, is a square

lattice with edge length L and N = L2 sites with periodic boundary conditions.

Note that N always refers to the number of sites in this thesis. Each site has

a magnetic moment, which is called the spin. Each spin can take a value s ∈
{−1,+1} and interacts with its nearest neighbors described by the Hamiltonian

H = −
∑
〈i,j〉

Jijsisj. (2.1)

〈i, j〉 refers to nodes i and j which are nearest neighbors, so that they are directly

coupled to each other. The coupling between i and j is characterized by Jij, the

coupling constant. If Jij > 0 ∀ 〈i, j〉 the model resembles a ferromagnet. For the

square lattice Ising model Jij = 1 ∀ 〈i, j〉 applies.

The most important modification of the square lattice Ising model in this thesis

is that the sites of the square lattice are displaced introducing geometric disorder

resulting in a non regular graph structure. The displacement is randomly Gaussian

distributed with standard deviation σ, i.e. the x and y coordinates of the sites are
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displaced by random ∆x and ∆y drawn from a Gaussian distribution

f(x) =
1√
2πσ

e−
x2

2σ2 . (2.2)

This is sketched in Fig. 2.1.

∆x

∆y

(x, y)

σ

σ

∆x2
∆y2

(x2, y2)

Figure 2.1: Sketch how the displacement of the nodes works. The nodes get
displaced by ∆x and ∆y drawn from the distributions displayed next to the points.
The original square lattice is indicated by dashed lines.

In the following σ will also be called disorder parameter. If we take ”nearest

neighbor” in the Euclidean meaning, most sites will only have one nearest neighbor

after the displacement. If only the edges between these neighbors remained, the

lattice would collapse to many very small clusters. But if one left the edges as the

were before the displacement, the edges would cross – at least for big displacements.

The crossing of edges then would destroy the planar character of the model. To

avoid this, a new edge set will be etablished after the displacement. The edges are

constructed according to one of the two in Sec. 2.2 defined rules, so that for a given

configuration of points the resulting graph is an instance of a proximity graph. The

coupling constant J gets identified with edge weights. J will be changed to depend

on the geometric distance between the connected pair of sites. More precise, the

weight of an edge is Eij = Jij = exp(α(1−dij)) where dij is the Euclidean distance

between the nodes i and j. Following Ref. [14] the free parameter α is set to

α = 0.5. The boundary is periodic, i.e. nodes near the right edge can be connected

to nodes near the left edge and vice versa. Analogously the top and bottom edges

are connected. One can imagine that the model lives on the surface of a torus

as pictured in Fig. 2.2. In subsequent graphics the graphs will be unwrapped to

rectangular shapes. Connections which cross a periodic boundary are indicated by

edges which connect a solid node to a dashed node.
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Figure 2.2: A graph on a torus to visualize periodic boundary conditions. On
this torus, for a more clear presentation, the underlying graph exhibits a height to
width ratio of 1:4. At 1:1 the torus would cut itself. Hence, the torus represents
the geometry of the model not perfectly, but gives very quick the right idea. Also
the shades are of course only a guide to the eye.

Note that for σ = 0 all dij = 1 and therefore all Jij = 1, so that the disordered Ising

model is reduced to the square lattice Ising model. For this an analytic solution

exists [24]. The critical temperature is

Tc = 2J/ ln(1 +
√

2) = 2.2691... (2.3)

and the critical exponents are α = 0, β = 1
8

and γ = 7
4
. These values are universal

for the Ising model. Their meaning will be explained in Sec. 4.4 in more detail.

The case for randomly distributed sites σ & 1 is already studied on a Delaunay

triangulation. Ref. [10] examines this for constant J and Ref. [14] for

Jij = e−αdij . (2.4)

Both articles conclude that this model lies within the universality class of the

square lattice Ising model, i.e. has the same critical exponents, as can be expected

since the underlying graph structure can be embedded in 2D. Hence, due to uni-

versality it should exhibit the same critical exponents as the basic square lattice

Ising ferromagnet.

2.2. Proximity Graphs

A graph G(V,E) is a set of nodes V and edges E. In the scope of this model, the

nodes get identified with the sites of the lattice and the edges signal the neighbor

status of two sites. If the corresponding nodes are connected, the sites will be

neighbors.
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All here mentioned graph types are proximity graphs. The edges of these graphs

connect nodes which are by some metric near to each other. Hence they are suited

to generalize problems defined on regular lattices with nearest neighbor relation-

ships. In this thesis the distance is always determined by the Euclidean metric in

two dimensions, though in principle every metric in any dimension can be used.

2.2.1. Delaunay Triangulation

The Delaunay triangulation (DT) is an undirected graph. An edge between two

nodes i and j will be drawn, if there exists a circle passing through i and j, which

does not contain any other node in its interior, see Ref. [12]. To make this clear

the construction of a four node DT is sketched in Fig. ?? in the appendix Sec. A.1.

2.2.2. Gabriel Graph

The Gabriel graph (GG) [7] is a subgraph of the DT, i.e. for the same set of nodes

V the edge set of the DT is a superset of the edge set of the GG EDT ⊇ EGG. Two

nodes i and j with distance dij will be connected with an edge, if a circle with its

center on half way between i and j and radius r = d
2

contains no other nodes. This

area will be called lune in the following. See also the cross hatched region from

Fig. 2.3(a).

2.2.3. Relative Neighborhood Graph

The Relative Neighborhood graph (RNG) [29] is a subgraph of the GG. Two nodes

i and j with distance dij will be connected, if no other node is in the lune. The

lune is defined as the intersection of two circles with radius r = d and centers on

i and j. See also the hatched region in Fig. 2.3(a).

2.2.4. Construction

The simplest way to construct these graphs is to test for each pair of nodes if any

other node lies in the lune of the pair. That is of complexity O(N3), because there

are N(N − 1) pairs and for each (N − 2) nodes to test. So the running time of a

straight forward implementation would be of order O(N3).

To reduce the complexity one can first create a DT in complexity O(N logN) [18]

and test the connectedness for each edge contained therein, because the DT is a

supergraph of both. For the construction of the DT for a given set of points one

might use existing software libraries, e.g. the qHull1 library. However, generation

of the graphs is not time critical in the scope of this bachelor thesis.

1http://www.qhull.org

http://www.qhull.org


6 2. Model

(a) (b) (c)

Figure 2.3: (a) Lunes, which define where an edge exist, of RNG (hatched region)
and GG (cross hatched region). It is evident from this sketch that the GG is a
supergraph of the RNG. If there is an edge in the RNG, the hatched region contains
no node, then of course also the double hatched region contains no node and thus
this edge appears also in the GG. So every egde of the RNG is also present in a GG
on the same set of nodes. (b) Example of a RNG on periodic boundary conditions.
Periodic nodes are dashed. (c) Example of a GG on periodic boundary conditions.
Periodic nodes are dashed.

So a trade off is to use basically the simple method but only test the connectedness

for nodes which are near to the lune and abort if one node inside the lune is found.

To determine which nodes are near the lune one can subdivide the area in M cells

of size Lc×Lc and save for each cell a list with nodes lying inside like presented in

Ref. [18] and sketched in Fig. 2.4. The implementation of this thesis uses M = N

(Lc = L).

Given the discretized cell structure it is just necessary to test the nodes in the

cells which resemble a rectangular bounding box of the lune. Most pairs will be

far away from each other and there will be one or more cells in the middle of the

bounding box, which are completely inside the lune. Then only one node has to

be tested from such a cell to discard an edge between the nodes. On the other

hand, nodes that will be connected are near to each other so that only very few

cells intersect the bounding box of their lune and consequently only very few nodes

have to be tested.

Here the number of cells equals the number of nodes. Indeed this method reduced

the time needed to construct a RNG with N = 322 and N = 642 by a factor of

over 15 respectively 40. Though the complexity is still of order O(N2) in the best

case, because for every pair at least one check has to be performed.
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(a)

Lc

Lc

(b)

Lc

Figure 2.4: Sketch how the cell algorithm for the construction of the RNG and
GG works. Here with the lune definition of the GG. The bounding box of the lune
which determines which cells have to be tested, is marked with thick colored lines.
(a) shows that it is sufficient to find a single node in an inner cell of the bounding
box to discard the edge between two distant nodes. The nodes inside the other
8 marked cells do not have to be tested anymore. (b) shows that only the nodes
inside the marked cell have to be tested, because there are no other nodes, the
edge can be drawn.

3. Methods

3.1. Thermodynamic Theory

The disordered Ising model will be examined as a canonical system in equilibrium.

A canonical system can exchange energy with a heat bath, thus it has a constant

temperature equal to the temperature of the heat bath. Equilibrium is defined as a

steady state, wherein the observables are only fluctuating but not changing in any

particular direction. For example thermal equilibrium denotes the condition that

the system under scrutiny has reached the temperature of the heat bath. This is

the case, once there is no directed energy exchange between them, thus the energy

of the simulated system reaches a steady state, where only fluctuations occur. In

a canonical ensemble the probability pi of a state i is distributed according to a

Boltzman distribution

pi ∝ e−βHi (3.1)

β =
1

kBT
(3.2)

Further the free energy F of a canonical ensemble is minimized in equilibrium and

all observables can be derived from F in a straight forward way, as stated in every

textbook about statistical physics (e.g. Ref. [21]).
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Because of

F = U − TS (3.3)

where S is the entropy, U = 〈H〉 the internal energy and 〈·〉 declares the expec-

tation value of an observable. One can guess that for low T the internal energy

will be low, and for high T the entropy will be high to minimize F . Considering

the Hamiltonian of the Ising model, a spin configuration of high order, where most

spins are aligned with their neighbors, leads to a low value of H and therefore

a low value of U . Simultaneously, this state of high order corresponds to a low

entropy S. Analogically a state of high U is also a state of high S. These prelimi-

nary considerations make a phase transition at some T where the influence of the

entropy on F becomes the same order of magnitude as the influence of the internal

energy on F , very plausible.

To determine

F = −kBT lnZ (3.4)

one has to know the partition function

Z =
∑
i

pi =
∑
i

e−βHi , (3.5)

where the sum goes over all possible states i of the system. Then, averages can be

computed according to

〈O〉 =
1

Z

∑
i

Oie
−βHi , (3.6)

Because every site can have two states, there are 2N different states of the system.

For each the energy Hi has to be calculated to solve the sum from Eq. (3.5) to

gain Z. Hence for small N the partition function is computable, but the system

may show very different properties than in the thermodynamic limit. To minimize

these finite size effects it is desirable to examine systems with large N . But 2N is

a very rapidly increasing number, so for large N it is unfeasible to calculate the

energy for each state, except for cases where it is possible to solve it analytically.

If not, one can get estimates of the observables for big N using Monte Carlo sim-

ulations, which are introduced in the next chapter.

The observables which are measured in this thesis are the magnetization per spin

m =
1

N

∑
i

si (3.7)

and the energy per spin

E =
1

N
H. (3.8)
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As mentioned before, properties near the phase transition and the critical temper-

ature Tc, where the phase transition occurs, will be examined. The Ising system

in two dimensions shows a second order phase transition, hence m and E are con-

tinous, but show at Tc an infinitly sharp slope in the thermodynamic limit, i.e.

the first derivative diverges. From statistical physics (See Ref. [21]) it is known

that these derivatives can be expressed by fluctuations, e.g. the specific heat can

be expressed as

c =
∂ 〈H〉
∂T

= kBβ
2
〈
(H − 〈H〉)2

〉
. (3.9)

The specific heat is a measure for how much energy is needed to change the tem-

perature of the system. Analogically the susceptibility

χ = Nβ
〈
(m− 〈m〉)2

〉
(3.10)

is a measure for how strong an outer magnetic field changes the magnetization of

the system. Beside these observables from classical physics, a fifth observable the

binder cumulant [2]

g =
3

2

(
1− 〈m4〉

3 〈m2〉2

)
(3.11)

is considered. This is a dimensionless value, which can be used to determine

the critical point. These five observables will be sufficient to analyse the phase

transition in the scope of this bachelor thesis. All of them can be easily computed

when m and E are measured. The next chapter will show, how to get estimates

for them through Monte Carlo simulations.

3.2. Monte Carlo Simulations

The idea behind Monte Carlo simulations is to take random samples of the observ-

able, which should be measured, and to estimate the mean of the observable from

this samples. To apply this technique to statistical ensembles, one creates sample

states of the system, measures the observables and calculates the expected value

through averaging.

In statistical physics the expected value of an observable O is – as also noted above

– calculated by

〈O〉 =
1

Z

∑
i

piOi. (3.12)

It is however possible that there are few states contributing massively more than

others. In canonical systems at low T , states with low values of H contribute much

more than states with high values of H. But if one samples the 2N states evenly,

it is probable to miss them. This is called simple sampling and results in large

errorbars for any observable. It is therefore desirable to sample only the states
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with high contributions to the sum. As noted before, the system under scrutiny is

canonical and therefore pi is known. The states are distributed according to the

Boltzmann distribution. Hence Importance Sampling can be utilized.

Instead of sampling uniformly distributed random states, one should sample states

according to their occurence probability given by the Boltzmann distribution. In

fact this reduces the estimator to

OM =
1

M

M∑
i=1

Oi, (3.13)

where M is the number of samples. The proof is shown in [20]. This is a very

convenient form.

But it is difficult to create a random state of a physical system, e.g. the Ising sys-

tem, according to a given distribution. The simple approach of creating uniformly

distributed random states and reject them with probability p−1i depending on their

energy is not efficient, because many generated states will be discarded and the

computing time to generate them and calculating their energy will be wasted.

Hence one uses Markov Chains to generate new states ν from former ones µ. It is

important that the transition probabilities A(µ → ν) obey Detailed Balance and

Ergodicity. Detailed Balance means that the probability to leave a state is the same

as the probability to enter the state in equilibrium pµA(µ → ν) = pνA(ν → µ)

with pµ the probability to be in state µ. This ensures that the system can equili-

brate and that the states are distributed according to the desired distribution in

equilibrium [20]. Ergodicity requires that every possible state is reachable from

every other state in finite time, see Refs. [20] [13]. Otherwise the samples might

not be representative for the whole system.

In this thesis three algorithms, which fulfill all requirements, were used. They

will be shortly described in the following subsections. But first equilibration- and

autocorrelation time will be discussed.

3.2.1. Equilibration- and Autocorrelation Time

To generate states acoording to the Boltzmann distribution at a given temperature

T , one starts with an arbitrary state and waits until it reaches thermal equilibrium.

Because equilibrium is defined as a steady state, one can determine it by observing

the change of the observables over the progressing simulation as pictured in Fig.

3.1(a). The count of sweeps until equilibrium is reached, is called equilibration

time teq. All measurements should start after this time.

In Fig. 3.1(a) the equilibrium is reached after approximately Ns ≈ 100 sweeps for

both an initial condition of all spins up and all spins random. It does not harm to

double that value to be save. Particularly, because it is a random process, so that
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there can not be an exact value.
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Figure 3.1: (a) Example of an Ising system L = 64 reaching thermal equilibrium
at T = 2.36 after approximately n = 100 sweeps.
(b) The autocorrelation of an Ising system L = 64 at T = 2.40 (only Metropolis
sweeps – otherwise the decline is too steep to show) on half logarithmic axis. The
straight line is an exponential fit exp(−t/τ) with τ = 342(1).

Because every state is generated from the preceding state, measurements of sub-

sequent states are correlated. To determine when two states are independent, one

calculates the normalized autocorrelation function χ(t)
χ(0)

with

χ(t) =

∫
dt′ [m(t′)− 〈m〉][m(t′ + t)− 〈m〉], (3.14)

which is expected to decay exponentially χ(t) ∝ exp(t/τ). This is visible in the

semilogarithmic plot shown in Fig. 3.1(b). To get the autocorrelation time one can

either fit an exponential function exp(−t/τ) like in Fig. 3.1(b) or integrate

τ =

∫
χ(t)

χ(0)
dt. (3.15)

τ is an estimate that specifies the time after which two samples are not corre-

lated anymore, see Refs. [20, p. 59ff] [13, p. 150f]. To ensure that the error is

not underestimated, one should wait 2τ sweeps between two measurements. The

autocorrelation time is dependent on the temperature. For example for the stan-

dard Metropolis algorithm the fluctuations are strong at high temperatures and

subsequent states are more dissimilar and therefore less correlated than at low tem-

peratures, where less spins are flipping. But the longest autocorrelation times are

encountered at the critical temperature. This effect is called critical slowing down

and is characterized by the dynamical critical exponent z [28]. The dependence of

the autocorrelation time τ on the system size L is at Tc given by τ ∝ Lz. More
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general, the power law scaling τ ∝ ξz holds, where ξ is the correlation length. It di-

verges at Tc and is then limited by the size of the simulated lattice. As mentioned

in Sec. 3.2.3, the Wolff cluster algorithm decreases z dramatically. This causes

the course of the autocorrelation time in dependence on temperature to change

significantly as shown in Sec. 4.2. Also according to Ref. [20] z is independent of

the lattice structure, which ensures that the simulation will benefit from the Wolff

cluster algorithm at any σ.

3.2.2. Single Spin Flip Metropolis Update

A Metropolis Monte Carlo [19] simulation of an Ising model will choose a random

spin, calculate the energy change

∆H = H(ν)−H(µ) (3.16)

that would result from a flip of that spin and execute the flip with the probability,

see Refs. [20] [13]

A(µ→ ν) =

1 ∆H ≤ 0

exp (−β∆H) ∆H > 0
. (3.17)

So if a transition lowers the energy it will be always done. This results in a high

ratio between chosen spins and flipped spins. Therefore it minimizes the calcula-

tions needed for a change of the state. Also note that ∆H is easy to calculate,

because it is only affected by the spin of the neighbors of the chosen site.

3.2.3. Wolff Cluster Update

Close to the critical temperature Tc the efficiency of the single spin flip Metropolis

update decreases significantly, i.e. the autocorrelation time τ diverges. This is

called critical slowing down.

In order to circumvent this a cluster algorithm like the Wolff algorithm [32] can

be used. For an Ising model the Wolff algorithm builds a cluster of sites starting

with a random site and adding neighboring sites of the same spin with probability

Padd = 1− exp (−2βJ) , (3.18)

where J is the coupling constant (c.f. Sec. 2.1). For every site that is added, the

neighboring sites of it are also considered for addition. (In the case that they are

added, they are ”added sites” and thus their neighbors get a chance to be added

too.) This procedure continues until there are no more sites to add. Then the

spin of every site in the cluster is flipped [20, p. 91ff] [13, p. 151f]. This leads
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fast to new uncorrelated states at the critical temperature because big clusters are

flipped. But there are not much advantages at high or low temperatures. At low

temperatures the cluster will consist of almost all sites such that all but very few

spins will be flipped. At high temperatures the cluster will only contain very few

sites. Both situations have no advantage over the Metropolis algorithm.

So one would activate this algorithm near the critical temperature but would use

a simple Metropolis algorithm at high and low temperatures.

3.2.4. Parallel Tempering

In simulations using parallel tempering [27] many identical systems at different

temperatures are simulated and the spin configurations between two neighboring

temperatures are swapped periodically with probability [20, p. 169ff] [13, S. 155ff]

Pi,i+1((Ei, Ti)→ (Ei+1, Ti+1)) = min

(
1, exp

(
(Ei+1 − Ei)

(
1

Ti+1

− 1

Ti

)))
,

(3.19)

as schematically pictured in Fig. 3.2(a). This has the advantage that correlation

times of single temperatures are far smaller, because their spin configuration of-

ten gets replaced by another uncorrelated configuration. In many cases the more

important advantage is that a system, which is trapped in a local minimum at a

given temperature, can travel to higher temperatures, leave its local minimum and

cool down again in a lower minimum. If a system is trapped in such a metastable

state, ergodicity is not guaranteed anymore. This is schematically pictured in Fig.

3.2(b).

(a)

S1 S2 S3
...

T

P1,2 P2,3

(b)

E

∆E

Figure 3.2: (a) schematic representation of the swapping of spin configurations
of different simulations Si between temperatures.
(b) sketch of an energy landscape, where the state of the system (filled circle)
is trapped in an local minimum. At low temperatures it is very unlikley that it
overcomes the energy barrier ∆E to the minimum. After a swap to higher energies,
the barrier can be overcome and after a swap to lower energies again, the state in
the minimum can be reached (open circle).

In the case of a ferromagnetic Ising model the risk to get trapped in a local energy
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minimum is very low. Consequently the autocorrelation decreases significantly. In

the scope of this thesis it is benefical to use parallel tempering, because one has to

simulate at many temperatures to determine the critical temperature. The addi-

tional calculations to determine whether to swap configurations or not, are small

in comparison with those that would be needed to generate a new uncorrelated

state without parallel tempering.

3.2.5. Implementation Details

Here, a mixture of the above three algorithms is used. For each sweep N single

spin flip Metropolis updates, one Wolff cluster update and one parallel tempering

swap are performed.

Because it is not known before, where the critical temperatures Tc are located,

the Wolff cluster algorithm is used for every temperature. Albeit the efficiency of

the algorithmic procedure was not dissected for every temperature, I feel that the

speed up near criticality is worth the moderate slow down at other temperatures.

4. Results

4.1. Technical Details

The generation of the Graphs and the Monte Carlo Simulation are implemented

in C, all needed random numbers are generated by the GSL [8] implementation

of Mersenne Twister [15] and the generated data is evaluated via Python scripts.

Most simulations were carried out on HERO, the High-End Computing Resource

Oldenburg. The entire source code is available at https://github.com/surt91/

IsingFerromagnet.

For evaluation the Monte Carlo simulation is run until the system is equilibrated

after teq sweeps. Then the simulation continues and the magnetization per site

m = 1
N

∑
i si and energy per site E = 1

N
H are calculated and saved for every

2τ sweeps, where τ denotes the autocorrelation time (see also Sec. 3.2.1). The

used values for different system sizes are listed in Tab. 4.1 in numbers of sweeps.

Note that the teq values are generously rounded up to be on the safe side and the

τ values are determined as the maximum τ over all simulated temperatures and

disorder parameters τ = max
T,σ
{τT,σ} and rounded up to the next integer.

For every observable O the expected value 〈O〉 is determined as the mean of

Nmeasure = 10000 measurements for L = 16, 32 or Nmeasure = 5000 for L = 64, 128.

The number of calculated sweeps totals to

Nsweeps = teq + 2τNmeasure.

https://github.com/surt91/IsingFerromagnet
https://github.com/surt91/IsingFerromagnet
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L 16 32 64 128 256

τ 3 5 7 12 16
teq 40 100 100 200 600

Table 4.1: Autocorrelation times τ and equilibration times teq for different system
sizes L. All values are generously rounded up and determined as the maximum
over all σ and T .

The expected values 〈O〉 for 100 different random proximity graphs with the same

disorder parameter σ are then averaged to 〈O〉. Note that the signs 〈·〉 are omitted

in the following for the sake of simplicity so it will be just called O.

Not only the seed to generate the new random realization of the proximity graph is

changed, but also the seed for the random numbers used in the Monte Carlo sim-

ulation and during the generation of the random start configuration of the spins.

The errors ∆〈O〉 are estimated by bootstrap resampling [5].

The bootstrap method estimates the error ∆〈O〉 by taking M random samples

from the M measured values of O, where the same value can be chosen more than

once, calculating the estimator 〈Ob〉 of this bootstrap sample and doing this k

times. Then the standard deviation of the k calculated 〈Ob〉 is taken as an esti-

mate for ∆〈O〉. In this thesis the number of bootstrap samples is k = 200.

Note that the error of 〈O〉, which is the standard error2 of different states on one

instance of a proximity graph ∆ 〈O〉, is dependend on τ [13, p. 151]. However

∆〈O〉, which is the the error of the observable averaged over different instances of

the proximity graphs, is not dependend on τ , because different realizations of the

random proximity graph are surely uncorrelated. Because every error mentioned

in this thesis is of this type, it is not necessary to determine τ for each observable.

Therefore a good error estimate can be achieved by simple bootstrapping. Nev-

ertheless, one has to simulate enough uncorrelated states for each realization to

keep the ∆〈O〉 small. For every determined value an error is calculated and given

in the form value(error of last digit). The errors of fit parameters are the

asymptotic standard errors as calculated by gnuplot. Gnuplot3 is an open source

plotting program used for all plots and fits in this thesis. Also note that dotted

lines in the plots are – if not noted otherwise – cubic spline interpolations purely

meant to be guides to the eye.

4.2. Short Analysis of the Autocorrelation Time

Before the results are presented, a short analysis of the autocorrelation time τ

according to Eq. 3.15 is given to illustrate the benefits of the used Wolff cluster

2for the arthmetic mean: standard deviation divided by
√
M , where M is the number of samples

3http://gnuplot.info/.

http://gnuplot.info/
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algorithm.

In Fig. 4.1(a) the autocorrelation time for the magnetization per site m at σ = 0

is plotted. Note that these are the unrounded values of Tab. 4.1. The plateau
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Figure 4.1: Dependece of the autocorrelation time τ on (a) the temperature T for
σ = 0 and (b) the system size L. Plotted on double logarithmic axis with a power
law fit τ ∝ Lz (dotted line) to determine the dynamical exponent z′. (Errorbars
are the standard error estimated by bootstrap resampling.)

at low temperatures is easy to understand considering the effects of the Wolff

cluster algorithm. At low temperatures it flips nearly every spin in every step,

thus the correlation drops to zero after one sweep. (Note that this is not the only

explanation for the small values of τ . The parallel tempering algorithm swaps spin

configurations with possibly different signs, thus having the same effect.) Also

note that the maximum of τ is not at Tc but at a higher temperature. The cause

is probably the effectiveness of the Wolff cluster algorithm at Tc, hence τ ≈ 1

at Tc. But it is also possible that these are again finite size effects. Obviously

the autocorrelation time τ increases with the system size. In fact it obeys a

power law τ ∝ Lz, which is the expected behavior of a dynamical exponent z

as mentioned in Sec. 3.2.1. In Fig. 4.1(b) τ is plotted over L. Note that the

exponent z′ = 0.64(2) determined by this plot is not comparable to the known

critical exponent z = 0.25 [20] expected for the Wolff cluster algorithm at Tc. On

the one hand the number of sweeps, in which τ is measured in this thesis, are more

than a standard Metropolis sweep to which z normally corresponds, because each

sweep alongside the N Metropolis flips also a cluster of ≥ 1 spin is flipped. On the

other hand the τ used for the fit are not the τ at Tc but the maximum τ of all T .

Nevertheless it is interesting that it obeys a power law τ ∝ Lz
′
. This suggests that

ξ & L is satisfied at the temperature of maximum τ , which is plausible, because

the peak in Fig. 4.1(b) is near Tc.
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Anyhow, Fig. 4.1(b) alone proofs the effectiveness of the Wolff cluster algorithm

at criticality.

This is of course only a rough analysis of existing data which was generated for

another purpose. For a more detailed inspection, one would perform the simulation

at the critical point, which will be determined subsequently.

4.3. Finite Size Effects

The aim of this thesis is to find the critical temperature Tc of the disordered Ising

model in dependence of the disorder parameter σ. At Tc the mean magnetization

〈|m|〉 of the system will show a steep decline to zero and the susceptibility

χ =
N

T

(〈
m2
〉
− 〈m〉2

)
(4.1)

will diverge. In Fig. 4.2(a) it is easy to see that the steep decline of 〈|m|〉 occurs

at lower temperatures T for higher disorder parameters σ.
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Figure 4.2: (a) Effects of the disorder parameter σ on the phase transition for an
underlying RNG with L = 128. The position of the slope, and hence the critical
temperature, moves to lower temperatures with increasing σ (0.0 ≤ σ ≤ 1.2) (b)
Effects of different system sizes at σ = 0, i.e. the square lattice Ising ferromagnet.
The L = 16 curve is much less steep than the L = 128 curve.

As evident from the figure there occurs no steep decline to zero, but a smooth one.

〈|m|〉 (Tc) = 0 is only present in infinite systems, hence no computer simulation will

show the exact behavior in the thermodynamic limit. It will always show some

finite size effects. These finite size effects cause a ”smearing out” of the phase

transition. This is stronger for smaller system sizes, as shown in Fig. 4.2(b)4.

Clearly, the L = 16 curve is much less steep than the L = 128 curve.

Despite of this one can obtain Tc by finite size scaling (FSS) methods [20, p. 232ff],

4See the appendix A.2 for a similar figure for the specific heat.
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which also yield the critical exponents. Such a FSS analysis will be performed in

the next section. Though there is an easier approach, which yields comparable

precise values for Tc in a much faster and more robust way, which is presented in

Sec. 4.5.

4.4. Critical Exponents

The critical exponents define the behavior of an observable near its divergence. For

instance the vicinity of the divergence of the susceptibility can be approximated

by

χ ∝ |T − Tc|−γ . (4.2)

And the infinite slope of the magnetization can be approximated in the direction

of lower T by

m ∝ |T − Tc|−β . (4.3)

As the name ”critical exponent” suggests, the curve progression of respective ob-

servables will often be a power law close to the critical point as in both examples

above. But this is not imperative. E.g. the critical ”exponent” α corresponding

to the divergence of the specific heat c diverges logarithmically for the two di-

mensional Ising model and is nominally α = 0. For that reason, α will not be

considered in this section.

The important property of the critical exponents is that they are universal for a

model with respect to certain model characteristics. I.e. for a given dimension they

are independent of the precise lattice structure and the magnitude of the coupling

constant J . Therefore they should also be independent of σ. But they are not

universal regarding the dimension of the model. Studies on random lattices with

(Ref. [14]) and without (Ref. [10]) varying coupling constants J confirm that the

critical exponents are not influenced by a random structure of the lattice. So they

will be used for consistency cross checking and comparison with the known exact

values [25, p. 59]. If the critical exponents can be reproduced, the determined

critical temperatures are probably correct, too.

To determine the critical exponents, the FSS method will be used. The explanation

below will give a rough idea how the method works. A more detailed explanation

can be found in Refs. [22], [17] or [3]. The crucial element is that there exists a

scaling function, which is valid for sufficiently large L near the critical temperature

Tc and has only an explicit L dependence. One can then express some observables
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like in Eq. (4.4), (4.5) and (4.6):

〈mL〉 = L−
β
ν M̃

(
L

1
ν (T − Tc)

)
, (4.4)

χL = L
γ
ν C̃
(
L

1
ν (T − Tc)

)
, (4.5)

g ∝ G̃
(
L

1
ν (T − Tc)

)
. (4.6)

Where g in Eq. (4.6) is the normalized Binder cumulant (see Eq. (3.11)) and M̃, C̃

and G̃ are scaling functions. To find the exponent, e.g. ν, one takes (4.6), solves

for G̃, adjusts the axis to represent y = G̃(x), and plots the measured observables

for all L. Then one varies ν and Tc until the plotted observables collapse on one

curve – the scaling function. A data collapse of the curves showed in Fig. 4.3(a) is

illustrated in Fig. 4.3(b). The same principle can be used to determine the other

two exponents. Note that L = 16 is not used for the collapse, because it is a rather

small value of L for which deviations from the assumed scaling behavior might be

expected, i.e. Eq. (4.4)-(4.6) are approximations for big L. For small L one needs

some corrections to scaling terms, which are not considered here.

To accomplish the collapse in a semi-automatic and reproduceable way with an

error estimate, the program autoscale.py [16] is used.
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Figure 4.3: (a) The Binder cumulant g of an square lattice Ising model (σ = 0).
(b) The curve from (a) collapsed by FSS (errors are for clarity not given, see Tab.
4.3)

A FSS analysis was performed to determine the critical exponents β, γ, ν using

autoscale.py [16] and Eq. (4.4)-(4.6). The values for ν are obtained by data

collapse for each observable. As a final result, the arithmetic mean of these values

is presented. Fig. 4.4(a)(b) show an examplary collapse for σ = 1 of the magnetic

susceptibility

χ =
1

TN

〈〈
m2
〉
− 〈m〉2

〉
. (4.7)
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This way the exponents γ and ν are determined. Similarly Fig. 4.4(c)(d) show

the collapse for the mean magnetization per site 〈|m|〉 for σ = 1 to determine the

exponents β and ν. Also the collapse of the binder cumulant, as mentioned before

and shown in Fig. 4.3(b), is used to get a further estimate of ν.

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

χ

T

L = 128

L = 64

L = 32

(b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

-5  0  5  10  15

χ
 L

-γ
/ν

(T-Tc) L
1/ν

Tc= 1.212

ν = 1.013

γ = 1.758

L = 32

L = 64

L = 128

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.6  1.8  2  2.2  2.4  2.6  2.8

〈|
m

|〉

(T-Tc) L
1/ν

L = 32

L = 64

L = 128

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-5  0  5  10  15

〈|
m

|〉
 L

β
/ν

(T-Tc) L
1/ν

Tc= 2.128

ν = 1.038

β = 0.123

L = 32

L = 64

L = 128

Figure 4.4: Examples for the method of FSS, which was used to determine the
critical exponents ν, γ, β and the critical temperature Tc. (a) The susceptibility χ
of an Ising model on an RNG at σ = 1. (b) data collapse, to determine γ (for error
estimates see Tab. 4.3). (c) The mean magnetization 〈|m|〉 of an Ising model on
an GG at σ = 1. (d) data collapse, to determine β (for error estimates see Tab.
4.3).

The values for σ = 0, i.e. the critical temperature and critical exponents for the

square lattice Ising model, are analytically known [25]. Due to universality, the

values for all other σ are expected be the same as for σ = 0 like mentioned before in

Sec. 4.3. Therefore it is sufficient to take a few samples to test, if the expectations

match. Hence 5 values of σ are analyzed. The analytically known values for σ = 0

and the limit of a random lattice σ & 1, examined in Ref. [10], are natural choices.

The other σ are chosen to represent regions where the behavior of Tc shows some
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characteristics. (As we will see later, there is a plateau at small σ, a steep decline

at intermediate values of σ and a shallow decline at σ = 0.5. This will be shown in

the next chapter in Fig. 4.7(a)(b).) The range ∆x which specifies the mesurements

used for the data collapse, was restricted to the in Tab. 4.2 listed ranges.

collapsed observable σ ∆x

〈|m|〉 0.0, 0.1 [−2.5, 7]
0.2, 0.3, 0.5, 1.0 [−1.5, 10]

χ 0.0, 0.1 [−2.0, 7]
0.2, 0.3, 0.5, 1.0 [−1.5, 7]

g 0.0, 0.1 [−3.5, 12]
0.2, 0.3, 0.5, 1.0 [−1.5, 10]

Table 4.2: The range ∆x specifies a range on the x-axis of the plots after the
collapse. Values inside this range are considered to judge the quality of the collapse.
I.e. only the data points inside this range have to collapse on each other – data
points beyond do not have to. This accounts for the fact, that FSS is only near
the critical point a good approximation.

The determined values are displayed in Tab. 4.3. The given errors for β, γ are esti-

mates from autoscale.py and the errors of Tc and ν are the standard deviations

of three obtained values.

σ Tc ν γ β

exact ([25, p. 59]) 0 2.2691... 1 7
4

1
8

RNG 0.0 2.2689(7) 0.992(11) 1.740(2) 0.130(1)
0.1 2.2058(8) 0.987(12) 1.746(5) 0.133(4)
0.2 1.627(2) 1.010(9) 1.756(14) 0.123(10)
0.5 1.2825(7) 1.010(16) 1.750(16) 0.143(13)
1.0 1.2123(3) 1.013(6) 1.758(16) 0.138(13)

GG 0.0 2.2687(5) 0.998(8) 1.735(2) 0.1262(4)
0.1 2.895(4) 0.999(19) 1.744(5) 0.133(6)
0.3 2.527(1) 1.029(30) 1.724(16) 0.129(12)
0.5 2.238(1) 1.006(5) 1.750(12) 0.125(13)
1.0 2.128(2) 1.038(32) 1.743(17) 0.123(16)

Table 4.3: Critical exponents for different values of σ. A finite size scaling analysis
was performed to determine the critical exponents β, γ, ν and the critical temper-
ature Tc. The errors for β and γ are estimated by autoscale.py [16]. The errors
of ν and Tc are the standard deviation of three obtained values through different
collapses (see text).

According to Tab. 4.3, most values are matching the expectations. Tc for σ = 0 is

in good agreement with the known value. Especially ν and γ are always in very

good agreement with their exact values. Besides the good agreement of the values
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of ν and γ obtained by data collapse, the ratio γ
ν

is also determined by fitting the

maxima of the susceptibility χmax to the power law function aL
γ
ν . Because there

were many measurements in the vicinity of Tc (c.f. Fig. 3(a)), it should give a

reasonable estimate to take their maximum, without the need to interpolate. The

results are displayed in Fig. 4.5. The ratios determined by this method confirm

the values obtained by collapse.
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Figure 4.5: Cross checking the ratio of the critical exponents γ and ν for (a) the
RNG at σ ∈ {0.0, 1.0} and (b) the GG at σ ∈ {0.0, 0.3}. The plotted values are
the maxima of all measured χ. Dotted lines are fits to the power law function aL

γ
ν .

Despite the very good results for ν and γ, most of the β seem to be a bit too

big – especially for the RNG – but they are close enough to the expectations to

be consistent. At least the expectations are always within two times the uncer-

tainty. Maybe their deviations can be explained by the fact that small systems

(L = 32, 64) were used for the analysis and no corrections to scaling terms were

considered. Anyway, two critical exponents are sufficient to determine the univer-

sality class [13, p. 145]. Therefore, the Ising model on a proximity graph is for

every σ in the same universality class as the square lattice Ising ferromagnet.

4.5. Critical Temperature

Though, if one is just interested in the critical temperature, an easier approach

is to find the intersections of the Binder cumulants g of different system sizes L,

which intersect at Tc [2]. Because the magnetization m is only measured for dis-

crete values of T , g is also only known for these discrete values and the analytical

course of the curve is not known and hence has to be interpolated to find the

intersection. Therefore a cubic spline interpolation5 is calculated for the measured

points. Cubic spline interpolation is a piece wise fitting of polynoms of degree

5created using the scipy.interpolate tools [11]
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three which are joined under the condition to be at least two times continuously

differentiable. This interpolation type has the advantage that it is only influenced

by local points so that the plateaus at low and high T do not influence the in-

terpolation in the vicinity of Tc – in contrast to, e.g. an polynom fit of degree 4,

which has to be restricted to the vincinity of Tc to yield meaningful results.
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L = 128

Figure 4.6: The Binder cumulant g of an square lattice Ising model (σ = 0)
interpolated with cubic splines, to determine the intersection, which is at Tc (the
errorbars are too small to see).

Take Fig. 4.6 as an example. Here such interpolations are plotted for σ = 0 and

are intersecting at T ≈ 2.27. To determine Tc, the intersections6 are averaged and

the standard error is calculated. In this case, one gets Tc = 2.2689(2), which is

in good agreement with the exact solution from Eq. (2.3). This test suggests that

measuring Tc this way yields adequat results and the interpolation does not lead

to major deviations.

In this section Tc for both the RNG or the GG are compared. In the following

figures the RNG will always be on the left side and the GG on the right side. And

in Tab. 4.4 the values are displayed together with the values obtained by the data

collapse from the previous section.

The values obtained through the data collapse and the values obtained through

the intersection of the binder cumulant are always in good agreement and of com-

parable precision.

These values of Tc are plotted over σ in Fig. 4.7.

One sees that the RNG on the left has generally a lower critical temperature than

the GG. Also Tc of the RNG decreases monotonically while Tc of the GG rises at

first. Naively one would expect that while changing the displacement of the nodes

monotonically, the properties of the system will also change monotonically, which

is indeed the case on a RNG but not on a GG. The maximum at σ ≈ 0.15 on the

GG will be discussed later. For large values of σ the displaced nodes approach

6found using the scipy.optimize tools [11]
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RNG GG

σ Tc T collapse
c Tc T collapse

c

0.00 2.2690(2) 2.2689(7) 2.2689(2) 2.2687(5)
0.03 2.2679(4) 2.851(1)
0.05 2.2662(5) 2.863(1)
0.08 2.2548(6) 2.882(2)
0.10 2.205(1) 2.2058(8) 2.893(2) 2.895(4)
0.12 2.1010(5) 2.903(3)
0.15 1.898(2) 2.903(3)
0.20 1.624(1) 1.627(2) 2.8274(6)
0.25 1.4812(5) 2.676(2)
0.30 1.407(2) 2.526(4) 2.527(1)
0.40 1.327(4) 2.332(4)
0.50 1.2818(2) 1.2825(7) 2.233(7) 2.238(1)
0.60 1.252(2) 2.183(3)
0.70 1.234(1) 2.154(8)
0.80 1.223(1) 2.140(3)
0.90 1.214(4) 2.132(1)
1.00 1.208(5) 1.2123(3) 2.121(8) 2.128(2)
1.10 1.206(1) 2.116(11)
1.20 1.204(2) 2.113(4)

Table 4.4: Critical temperatures for different σ. For both graph types, GG and
RNG. T collapse

c denotes the values of Tc which were determined before via finte size
scaling analysis. The other values are determined by the intersection of the binder
cumulants g for different system sizes. The values of both methods match.

(a)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1  1.2

T

σ

Tc

(b)

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 0  0.2  0.4  0.6  0.8  1  1.2

T

σ

Tc

Figure 4.7: Critical temperatures Tc over different disorder parameters σ for (a)
the RNG and (b) the GG. Interesting points are the jump and rise of the GG at
small σ and the plateau on the RNG for small σ.
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the limit of randomly distributed nodes, hence Tc is independent of σ for σ � 1.

Regarding this both graph types meet the expectations.

Another strange property is the jump from σ = 0 to σ > 0 of Tc on the GG. To

understand that one has to consider the influence of the graph properties on the

critical temperature.

4.5.1. Influence of the Average Degree on the Critical Temperature

One basic property of a graph is its average degree K – sometimes called average

coordination number. K is defined as the mean count of neighbors per node.

K =
1

N

∑
〈i,j〉

1. (4.8)

For a Poisson point process, i.e. for σ & 1, the average degree of the mentioned

graph types are known. KDT = 6 [1], KGG = 4 [23] and KRNG = 2.5576(3) [18].

Indeed, for σ & 1 Fig. 4.8(b)(a) confirm the last two values.

It is well known that the degree has an impact on the critical temperature. For

example the Honeycomb lattice is of degree K = 3 and the respective critical

temperature can be obtained by analytic means [31], yielding

cosh

(
J

Tc

)
= 2

J=1
=⇒ Tc ≈ 1.52. (4.9)

Note that this is lower than the critical temperature Tc = 2.269... characteristic

for the square lattice with degree K = 4.

This is plausible, because more edges lead to more neighbors. Consider, e.g. a

fully polarized spin configuration, e.g. all spins are pointing up. Now, the energy

needed to flip a spin so that it assumes an orientation opposite to the orientation

of its neighbors increases with the number of its neighbors. So the more edges are

in the graph the more stable the system becomes with respect to spin flips at low

T , leading to an increasing value of Tc. This is also an explanation why the Tc of

the RNG is always lower than that of the GG: The degree of the RNG is lower.

If one plots the degree of the graphs at different σ like in Fig. 4.8(a)(b), one

recognizes that Tc and K are evidently correlated. The values for K are obtained

as an average over 100 realizations of each graph type for L = 16 and L = 32

lattices. In Fig. 4.8(a)(b) one can see that these curves are almost identical and the

small errorbars suggest that they are sufficiently precise for this purpose. It seems

reasonable to normalize Tc by the degree of the underlying graph. This is done

in Fig. 4.8(c)(d). Indeed the normalization eliminates the jump and reduces the

slope of the Tc curve for the GG. Hence it reduces differences between the RNG and

the GG. However the elimination of the jump is unfortunately a coincidence and
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probably caused by a lucky choice of the function, which determines the coupling

constants J . As proof for this claim in Sec. 4.5.3 the same analysis is performed for

a model with fixed J . There the jump gets narrower but is still existent. Anyway,

the degree seems to have an impact on the critical temperature Tc, but it is not

a trivial one. Note that even after the normalization, the values of Tc/K for the

RNG are smaller than those for the GG.
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Figure 4.8: Top: Degree K of graph over different disorder parameters σ for (a)
the RNG and (b) the GG. Bottom: Critical temperatures normalized by degree
over different disorder parameters for (c) the RNG and (d) the GG.

To understand the jump of Tc it seems to be necessary to understand the jump

of K, which is easily explained by the definition of the GG. As evident from

Fig. 4.10(a)(b) a small change of σ causes many new edges to arise7. To fully

understand this, take four nodes forming a square. The edge across the diagonal

of the plaquette does not exist, because the other two nodes are located exactly

on the border of the lune. Moving one node slightly into the square, causes the

lune to get smaller, hence no other nodes are inside or on the border of the lune

7See also http://www.youtube.com/watch?v=PcVZ2pG11GI for an animation.

http://www.youtube.com/watch?v=PcVZ2pG11GI
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anymore and the new diagonal edge appears. This process is sketched in Fig. 4.9.

(a) (b)

Figure 4.9: (a) The edge across does not exist, because the other two nodes are
on the edge of the lune. (b) Moving one node slightly into the square, causes the
lune to get smaller, hence no other nodes are inside or on the edge of the lune
anymore and the edge appears.

Further, the increase of Tc on the GG can be made plausible. Also, the maximum

value of K and the minimum value of Tc are observed at a similar value of σ.

Hence, while displacing the nodes, there arise more edges than edges are vanishing

until σ ≈ 0.15 is reached. Then more edges disappear, than appear at further

displacement. This is not an obvious effect, but can be seen in Fig. 4.10(c)(d)(e).

The evolution of the RNG with increasing σ can be made plausible with the same

arguments. Fig. 4.11 shows that for σ . 0.1 the square lattice character is

preserved – no new edges arise and only a few existing edges vanish, which explains

the plateau in the Tc diagram. With increasing σ, more and more edges vanish8,

thus reducing the degree and consequently the corresponding value of Tc.

8See also http://www.youtube.com/watch?v=rltzi15mTM4 for an animation.

http://www.youtube.com/watch?v=rltzi15mTM4


28 4. Results

(a) σ = 0.00 (b) σ = 0.01

(c) σ = 0.09 (d) σ = 0.15 (e) σ = 0.21

Figure 4.10: GG with periodic boundary conditions for different σ. The number
of edges increases from (a) to (b) significantly. Until (d) it increases and after that
the number of edges decreases.

(a) σ = 0.09 (b) σ = 0.15 (c) σ = 0.21

Figure 4.11: RNG with periodic boundary conditions for different σ. (a) has still
almost the square lattice configuration of edges, which is why the plateau from Fig.
4.7(a) exists. In the next two pictures one sees the fast disappearance of edges,
chracteristic for the RNG for a set of randomly distributed points (i.e. Poisson
process).
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4.5.2. Influence of the Coupling Constant on the Critical Temperature

However, note that the degree does not alone influence the behavior of Tc. Further

Tc depends on the coupling constant J , which is obvious from Eqs. (2.3) and

(4.9). The coupling constant in turn is depending on the length of the edges,

which changes with σ. Therefore in Fig. 4.12(a)(b) the mean sum of the coupling

constants to all neighbors 〈∑
〈i,j〉

Jij

〉
(4.10)

is plotted. This is a number which should combine the dependence on the degree

and the coupling constant. It is determined by summing over the edge weights of all

edges connected to a node and averaging this value over all nodes. Alternatively

it is the average edge weight of all edges of the graph multiplied by the degree

〈Jij〉K. The plots Fig. 4.12(c)(d) show that
〈∑

〈i,j〉 Jij

〉
is also correlated with Tc.

Though Eq. (4.9) shows that there does not have to be a linear connection between

J and Tc, the best guess is a linear connection, because this model is derived from

the square lattice, where the connection is linear. Therefore, one normalizes Tc

with
〈∑

〈i,j〉 Jij

〉
as in Fig. 4.12(c)(d), the jump on the GG arises again, but Tc

is now monotonically decreasing with increasing disorder parameter σ. Moreover

the forms of both curves are quite similar, but the one for the RNG in Fig. 4.12(c)

is generally lower and spans over a bigger temperature range than the curve of

the GG in Fig. 4.12(d). Both graph types have a plateau at 0 < σ < 0.1. The

conclusion is that small disorder has little influence on this normalized critical

temperature. Also both graph types exhibit a steep decline after the plateau

before they approach an asymptotic limit for σ � 1.

If one looks at the behavior of
〈∑

〈i,j〉 Jij

〉
for σ � 1 and consequently dij ≈ 1,

the following approximation is valid.

|1− dij| := ε� 1 (4.11)

Jij = e±αε ≈ 1± ε∓ . . . (4.12)

〈∑
〈i,j〉

Jij

〉
=

〈∑
〈i,j〉

(1± ε)

〉
(4.13)

=
1± ε
N

∑
〈i,j〉

1 (4.14)

= K(1± ε) ≈ K (4.15)
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Figure 4.12: Top: Mean sum of the coupling constants to all neighbors over
different disorder parameters for (a) the RNG and (b) the GG. Bottom: Critical

temperatures normalized by mean sum of the coupling constants
〈∑

〈i,j〉 Jij

〉
over

different disorder parameters for (c) the RNG and (d) the GG.
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Therefore this normalization is independent of the choice of α at small values of

σ. In Sec. 4.5.3 in Fig. 4.13(c)(d) the values from Fig. 4.12(c)(d) are compared to

T/K for α = 0.

4.5.3. Course of the Critical Temperature with Fixed Coupling

Constants

A quick analysis of this model with fixed coupling constants J = 1 (i.e. α = 0) is

performed. The results are displayed in Fig. 4.13. The jump from σ = 0 to σ > 0

does not disappear as in Fig. 4.8 for variable J with α = 0.5. This suggests that the

disappearance of the jump is a random special case for the function Jij = eα(1−dij)

at α = 0.5.

The simulations were carried out on L ∈ {16, 32, 64} lattices for a subset of the σ

and T used in the previous simulation. Also note that the degree K is the same

used in 4.7(a)(b) because it is obviously independent of J . Further, note that for

small values of σ, Tc/K obtained using the fixed coupling strength J = 1 coincides

with Tc/
〈∑

〈i,j〉 Jij

〉
obtained using the distance dependent coupling strength (see

Eq. 2.4). This can be expected from the approximate analytic statement presented

in Sec. 4.5.2.

Ref. [10] gives a critical temperature for the DT with J = 1 Tc,DT = 3.809. It can

be compared to the obtained Tc,GG = 2.19 and Tc,RNG = 1.13 for σ = 1.2, which

should ensure a set of nodes very similar to a Poisson process. Note that while for

the graph ensembles the relation

DT ⊇ GG ⊇ RNG (4.16)

holds (see Sec. 2.2), the relation for the critical points on these graphs

Tc,DT ≥ Tc,GG ≥ Tc,RNG (4.17)

is also true. Also keep in mind that the relation Tc,GG ≥ Tc,RNG was true for α = 0.5

in the preceding sections. This phenomenon is also known from percolation where

the relation pc,DT ≥ pc,GG ≥ pc,RNG holds for the percolation threshold pc – the

critical point of the percolation problem. The fact that the subgraph hierachy can

be translated to the sequence of pc for the subgraphs, is known as the containment

theorem [6]. Possibly the containment theorem is also applicable on this kind of

problem.

9more precise: a value of 1
Tc
≈ 0.263 is given
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Figure 4.13: Top: Critical Temperature Tc of the graph over different disorder
parameters σ with fixed coupling constants J = 1 for (a) the RNG and (b) the
GG. Bottom: Critical temperatures normalized by degree K over different disorder
parameters σ with fixed coupling constants J = 1 for (c) the RNG and (d) the

GG. The values of Tc/K are compared to those of Tc/
〈∑

〈i,j〉 Jij

〉
from Sec. 4.5.2.

4.6. Critical Value of the Binder Cumulant

The value of the Binder cumulant at the critical point gc depends strongly on

boundary conditions but only weakly on the precise lattice structure [26]. For pe-

riodic boundary conditions on a square lattice it is gc ≈ 0.916 according to [26] 10.

Because the analysis of Sec. 4.5 yields gc anyway, it is easy to check the consistency

and behavior of gc in the geometrically disordered Ising model. The error bars are

the standard error of the six values obtained through the intersections.

Considering both plots in Fig. 4.14, gc is for low σ obviously always bigger than

the known value. Though the deviations are only very small. Perhaps this over-

10Note that [26] uses another definition of the Binder cumulant, and has to be normalized by 2
3

to match the definition in this thesis.
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Figure 4.14: Values of the Binder cumulant at the critical point gc for (a) a RNG
and (b) a GG for different σ. The dotted line is the reference value for square
lattices with periodic boundary conditions [26], which corresponds to σ = 0.

estimation is caused by the cubic spline interpolation used to acquire these gc

values. Or this are again finite size effects which would disappear for larger system

sizes. For bigger σ the uncertainty gets greater, but the values do only differ by

a few percent, hence even the big disorder and definition of nearest neighbors via

a proximity graph does not change the value of gc much. Though it is mentioned

in [26] that the lattice structure has a minor effect on gc, the uncertainty of gc is

too large to observe this. For a more exact analysis, new Monte Carlo simulations

at Tc would be needed. But this is beyond the scope of this thesis. Anyway, the

results are the expected behavior, because no major deviations from the value of

gc at σ = 0 occur at larger σ. Within error bars the values are all in reasonable

agreement with gc.

5. Conclusion

In this thesis the properties of an Ising ferromagnet, which nodes are moved by

a Gaussian distributed displacement up to the limiting case of a Poisson process,

is studied with Monte Carlo Simulations. The neighbor relationship is provided

by two proximity graphs – the RNG and the GG. These graphs conserve the two

dimensional character of the lattice. The coupling constants are distance depen-

dent, with increasing distance the coupling strength decreases exponentially. This

model is within the universality of the square lattice Ising ferromagnet. Its critical

temperature decreases with increasing disorder on a RNG. Since effectively, the

decreasing average coordination number of the underlying graph lowers the resis-

tance to spin flips within strongly polarized configurations at low temperatures.

On a GG it first jumps, increases up to a maximum and decreases afterwards. At
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high disorder it approaches the limit of randomly generated graphs of the respec-

tive type. The course of the critical temperatures can be made plausible observing

the degree of the underlying graph, an approximate analytic statement as reason

for the observed behavior was also presented.

5.1. Outlook

The behavior of the normalized critical temperatures in dependence on σ of the

Relative Neighborhood graph and Gabriel graph are qualitatively similar to each

other. One could study the behavior of other proximity graphs like the minimum

spanning tree or the Delaunay triangulation to examine if it is also similar.
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A. Appendix

A.1. Example for a Small Delaunay Triangulation

The Delaunay triangulation (DT) is an undirected graph. An edge between two

nodes i and j will be drawn, if there exists a circle passing through i and j, which

does not contain any other node in its interior.

Figure A.1: Circles which contain nodes are dashed. Circles which contain no
nodes are not dashed. Consequently nodes on the border of not dashed circles are
connected. Note that the drawn cricles are only examples as there is an infinitive
number of alternative not dashed circles which contain no other node. Note also
that in contrast to the GG the circles do not have to be centered on the middle
point between the nodes, if however the centered circle does not contain any node,
the resulting edge will be present in DT and GG. Therefore GG is a subgraph of
DT.

A.2. Finite Size Effects at the Example of the Specific

Heat

In Fig. A.2 the specific heat

c =
N

T 2

〈〈
E2
〉
− 〈E〉2

〉
(A.1)

is plotted for different system sizes. The finite size effects are obvious. The diver-

gence is finite and gets steeper with larger L. Besides the maximum moves to the

critical temperature with larger L.
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Figure A.2: Effects of different system sizes on the specific heat c at σ = 0.
Dotted lines are guides to the eye.
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