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The distribution of the hypervolume V and surface ∂V of convex hulls of (multiple) random walks in higher
dimensions are determined numerically, especially containing probabilities far smaller than P = 10−1000 to
estimate large deviation properties. For arbitrary dimensions and large walk lengths T , we suggest a scaling
behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of
the distributions in the tails. We underpin both with numerical data in d = 3 and d = 4 dimensions. Further, we
confirm the analytically known means of those distributions and calculate their variances for large T .
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I. INTRODUCTION

The random walk (RW) is first mentioned [1] with this
name in 1905 by Pearson [2] as a model, where at discrete
times, steps of a fixed length are taken by a single walker in a
random direction, e.g., with a random angle on a plane in two
dimensions. This was later generalized to random flights in
three dimensions [3] and RWs on a lattice in d dimensions [4].
A few decades later even more generalized models appeared,
e.g., introducing correlation [5–7] or interaction with its
past trajectory [8–10], its environment [11–15], or other
walkers [16,17]. Despite the plethora of models developed for
different applications, still simple isotropic RWs are used as
an easy model for Brownian motion and diffusion processes
[11,15,18], motion of bacteria [19,20], financial economics
[21], detecting community structures in (social) networks
[22,23], epidemics [24], polymers in solution [25–27], and
home ranges of animals [28,29].

The most important quantity that characterizes RWs is the
end-to-end distance and how it scales with the number of
steps, giving rise to an exponent ν, i.e., the inverse fractal
dimension. To describe the nature of different RW models
more thoroughly, other quantities can be used. Here, we are
interested in analyzing the “volume” and the “surface” of the
RW, which can be conveniently defined by the corresponding
quantities of the convex hulls of each given RW. These
quantities are used, usually in two dimensions, to describe
home ranges of animals [30,31]. But also, very recently, to
detect different phases in intermittent stochastic trajectories,
like the run and tumble phases in the movement of bacteria
[32]. The convex hull of a RW is the smallest convex polytope
containing the whole trace of the RW, i.e., it is a nonlocal
characteristic that depends on the full history of the walker,
namely all visited points.

The most natural statistical observables associated to the
convex hull of a random trajectory are its (hyper-) volume
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and its (hyper-) surface. The full statistics of these two
random variables are nontrivial to compute even for a single
Brownian motion in two or higher dimensions. Even less is
known on the statistics of these two random variables for a
discrete-time random walk with a symmetric and continuous
jump distributions. In fact, most publications concentrate on
the area and perimeter of convex hulls for two-dimensional
RWs. The mean perimeter and the mean area of a single
random walk in a plane, as a function of the number of steps
(in the limit of large number of steps with finite variance of
step lengths where it converges to a Brownian motion), are
known exactly since more than 20 years [33,34]. These results
for the convex hull of a single Brownian motion in a plane have
recently been generalized in several directions in a number of
studies. These include the exact results for the mean perimeter
and mean area of the convex hull for multiple independent
Brownian motions and Brownian bridges in a plane [35,36],
for the mean perimeter of the convex hull of a single Brownian
motion confined to a half plane [37], and for the mean volume
and surface of the convex polytopes in arbitrary dimensions d

for a single Brownian motion and Brownian bridge [38–40].
Much less is known for discrete-time random walks with
arbitrary jump length distributions. Very recently the mean
perimeter of the convex hull for planar walks for finite (but
large) walk lengths and arbitrary jump distributions were
computed explicitly [41]. For the special case of Gaussian
jump lengths, an exact combinatorial formula for the mean
volume of the convex hull in d-dimensions was recently
derived [39]. In d = 2, the asymptotic (for large number of
steps) behavior of the mean area for Gaussian jump lengths
was derived independently in Ref. [41]. Also the convex hulls
of other stochastic processes like Lévy flights [42,43], random
acceleration processes [44], or branching Brownian motion
with absorption [24] were under scrutiny recently.

Analytical calculations of the variance or higher moments
turned out to be much more difficult [45,46]. In absence
of any analytical result for the full distribution of the
volume and surface of the convex hull of a random walk, a
sophisticated large-deviation algorithm was recently used to
compute numerically the full distribution of the perimeter and
the area of the convex hull of a single [47] and multiple [48]
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A global picture of a random particle movement is given by the convex hull of the visited points. We obtained
numerically the probability distributions of the volume and surface of the convex hulls of a selection of three types
of self-avoiding random walks, namely, the classical self-avoiding walk, the smart-kinetic self-avoiding walk,
and the loop-erased random walk. To obtain a comprehensive description of the measured random quantities,
we applied sophisticated large-deviation techniques, which allowed us to obtain the distributions over a large
range of support down to probabilities far smaller than P = 10−100. We give an approximate closed form of the
so-called large-deviation rate function � which generalizes above the upper critical dimension to the previously
studied case of the standard random walk. Further, we show correlations between the two observables also in the
limits of atypical large or small values.
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I. INTRODUCTION

The standard random walk is a simple Markovian process
which has a history as a model for diffusion. There are many
exact results known [1]. If memory is added to the model,
e.g., to interact with the past trajectory of the walk, analytic
treatment becomes much harder. A class of self-interacting
random walks that we will focus on in this study are self-
avoiding random walks, which live on a lattice and do not visit
any site twice. This can be used to model systems with excluded
volume, e.g., polymers whose single monomers cannot occupy
the same site at once [2]. There are more applications which are
not as obvious, e.g., a slight modification of the smart-kinetic
self-avoiding walk traces the perimeter of critical percolation
clusters [3], while the loop-erased random walk can be used
to study spanning trees [4] (and vice versa [5]).

One of the central properties of random walk models is the
exponent ν, which characterizes the growth of the end-to-end
distance r with the number of steps T , i.e., r ∝ T ν . While this
has the value ν = 1/2 for the standard random walk, its value
is larger for the self-avoiding variations, which are effectively
pushed away from their past trajectory. In two dimensions,
this value (and other properties) can often be obtained by the
correspondence to Schramm-Loewner evolution [6–9]. But
between two dimensions and the upper critical dimension,
above which the behavior is the same as the standard random
walk, Monte Carlo simulations are used to obtain estimates for
the exponent ν.
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Here we want to study the convex hulls of a selection of
self-avoiding walk models featuring larger values of ν. The
convex hull allows one to obtain a global picture of the space
occupied by a walk without exposing all details of the walk. As
an example, convex hulls are used to describe the home ranges
of animals [10–12] or the spatial extent of animal epidemics
[13]. In physics, they have been proposed to be applied for
the analysis of surface diffusion or the detection of binding
of molecules [14]. Here, more fundamentally, we will look at
the smart-kinetic self-avoiding walk (SKSAW), the classical
self-avoiding walk (SAW), and the loop-erased random walk
(LERW), since they span a large range of ν values and are well
established in the literature. About the convex hulls of standard
random walks, we already know plenty of properties. The mean
perimeter and area have been known exactly for over 20 years
[15,16] for large walk lengths T , i.e., the Brownian motion
limit. Since then simpler and more general methods were
devised based on Cauchy’s formula which relates the support
function of a curve to the perimeter and the area enclosed by
the curve [17,18]. More recently, also the mean hypervolume
and surface for arbitrary dimensions was calculated [19]. For
discrete-time random walks with jumps from an arbitrary
distribution, the perimeters of the convex hull for finite (but
large) walk lengths T were computed explicitly [20]. For the
case of Gaussian jump lengths, even an exact combinatorial
formula for the volume in arbitrary dimensions is known [21].
For the variance there is an exact result for Brownian bridges
[22]. Concerning the full distributions, no exact analytical
results are available. Here sophisticated large-deviation sim-
ulations were used to numerically explore a large part of the
full distribution, i.e., down to probabilities far smaller than
10−100 [23–25]. Numerical studies of this kind, which are
able to obtain the distribution over a wide range including
the extreme tails, are useful to check predictions about, e.g.,
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Abstract. We study the distribution of the area and perimeter of the convex hull of the “true”
self-avoiding random walk in a plane. Using a Markov chain Monte Carlo sampling method, we
obtain the distributions also in their far tails, down to probabilities like 10−800. This enables
us to test previous conjectures regarding the scaling of the distribution and the large-deviation
rate function Φ. In previous studies e.g., for standard random walks, the whole distribution
was governed by the Flory exponent ν. We confirm this in the present study by considering
expected logarithmic corrections. On the other hand, the behavior of the rate function deviates
from the expected form. For this exception we give a qualitative reasoning.

1. Introduction
The random walk is a very simple model for diffusive processes with Brownian motion [1] as
the prime example. Though its applications range from financial models [2] over online search
engines [3] to the very sampling algorithm used in this study [4]. Its simplest variation lives on
a lattice and takes steps on random adjacent sites at each timestep, which is exceptionally well
researched [5]. With the further constraint that no site may be visited twice, such that the walk
is self-avoiding, it becomes a simple model for polymers [6]. Interestingly, depending on the
exact protocol how the self-avoidance is achieved, they can also be used to study the perimeter
of, e.g., critical percolation clusters [7] or spanning trees [8, 9]

The distance of a random walk from its starting point is the most prominent and simple
measurable quantity. Nevertheless, here we go beyond this by considering the convex hull of
all T sites visited by the random walk, i.e., the smallest convex polygon containing all these
sites. It can be seen as a measure of the general shape of the random walk, without exposing
all details of the walk. Thus, the area A or perimeter L of the convex hull can then be used to
characterize the random walk in a very simple way. This method is also used, for example, to
describe the home ranges of animals [10, 11, 12], spread of animal epidemics [13] or classification
of different phases using the trajectory of intermittent stochastic processes [14]. For standard
random walks its mean perimeter [15] and mean area [16] in the large T limit are known exactly
since a long time. More recently different approaches generalized these results to multiple
random walks [17, 18] and arbitrary dimensions [19]. Even more recently the mean perimeter
and area for finite (but large) walk lengths T were computed explicitly [20] if the random walk is
discrete-time with jumps from an arbitrary distribution. If the distribution of the jump length
is Gaussian, even an exact combinatorial formula for the mean volume in arbitrary dimensions
is known [21]. For higher moments however, there is only one analytic result for the special
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Abstract – We derive analytically the full distribution of the ground-state energy of K non-
interacting fermions in a disordered environment, modelled by a Hamiltonian whose spectrum
consists of N i.i.d. random energy levels with distribution p(ε) (with ε ≥ 0), in the same spirit
as the “Random Energy Model”. We show that for each fixed K, the distribution PK,N (E0) of
the ground-state energy E0 has a universal scaling form in the limit of large N . We compute this
universal scaling function and show that it depends only on K and the exponent α characterizing
the small ε behaviour of p(ε) ∼ εα. We compared the analytical predictions with results from nu-
merical simulations. For this purpose we employed a sophisticated importance-sampling algorithm
that allowed us to obtain the distributions over a large range of the support down to probabilities
as small as 10−160. We found asymptotically a very good agreement between analytical predictions
and numerical results.

Copyright c© EPLA, 2018

The celebrated “Random Energy Model” (REM) of Der-
rida [1] has continued to play a central role in under-
standing different aspects of classical disordered systems,
including spin-glasses, directed polymers in random me-
dia and many other systems. In the REM, one typically
has N energy levels which are considered to be indepen-
dent and identically distributed (i.i.d.) random variables,
each drawn from a probability distribution function (PDF)
p(ε). Typical observables of interest are the partition func-
tion, free energy, etc. The REM can also be useful as a
toy model in quantum disordered systems. For example,
let us consider a single quantum particle in a disordered
medium with the Hamiltonian ĥ. We will assume that the
spectrum of the operator ĥ has a finite number of states N
(for instance a quantum particle on a lattice of finite size
and a random onsite potential, as in the Anderson model).
In general, solving exactly the spectrum of such an oper-
ator is hard, for a generic random potential. One possible
approximation, in the spirit of the REM in classical disor-
dered systems, would be to consider the toy model where
one replaces the spectrum of the actual Hamiltonian by
N ordered i.i.d. energy levels ε1 ≤ ε2 ≤ · · · ≤ εN each
drawn from the common PDF p(ε). Without loss of gen-

erality, we will also assume that the Hamiltonian ĥ has
only positive eigenvalues. This would mean that, in the

corresponding toy model, the PDF p(ε) is supported on
[0, +∞). It is well known that, in a strongly disordered
quantum system, where all single-particle eigenfunctions
are localised in space, the energy levels can be approxi-
mated by i.i.d. random variables (see, e.g., [2]). There-
fore, the REM that we consider here will be relevant in
such strongly localised part of the spectrum of a disor-
dered Hamiltonian.

Now consider a system of K noninteracting fermions
with the Hamiltonian ĤK =

∑K
i=1 ĥi where ĥi is the

single-particle Hamiltonian associated with the i-th par-
ticle. The ground state of this many-body system would
correspond to filling up the single-particle spectrum up to
the Fermi level εK , with one particle occupying each of
the states with energies ε1, ε2, · · · , εK . The ground-state
energy E0 of this many-body system is therefore given by

E0 =

K∑

i=1

εi. (1)

Clearly, E0 is a random variable, which fluctuates from
one realisation of the disorder to another. Given p(ε), we
are interested in computing the distribution PK,N of E0,
for fixed K (i.e., the number of fermions) and N (i.e., the
number of levels). We note that, for K = 1, E0 = ε1 is
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Large-deviation properties of the largest biconnected component
for random graphs
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Abstract. We study the size of the largest biconnected components in sparse Erdős-Rényi graphs with
finite connectivity and Barabási-Albert graphs with non-integer mean degree. Using a statistical-mechanics
inspired Monte Carlo approach we obtain numerically the distributions for different sets of parameters over
almost their whole support, especially down to the rare-event tails with probabilities far less than 10−100.
This enables us to observe a qualitative difference in the behavior of the size of the largest biconnected
component and the largest 2-core in the region of very small components, which is unreachable using simple
sampling methods. Also, we observe a convergence to a rate function even for small sizes, which is a hint
that the large deviation principle holds for these distributions.
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1 Introduction

The robustness of networks [1,2,3,4,5] attracted much in-
terest in recent time, from practical applications for, e.g.,
power grids [6,7,8], the internet [9,10], to examinations
of genomes [11,12]. As typical in network science, one
does not only study the properties of existing networks.
To model the properties of real networks, different en-
sembles of random graphs were devised, e.g., Erdős-Rényi
random graphs [13], small world graphs [14], or scale-free
graphs [15]. Also for such ensembles the robustness has
been studied by analytical and numerical means [16,17,18,
19]. One often used approach to determine the robustness
of networks are fragmentation studies, where single nodes
are removed from the network. These nodes are selected
according to specific rules (“attack”) or randomly (“fail-
ure”). The functionality, e.g., whether it is still connected,
is tested afterwards. A property necessary for robustness
is thus that the graph stays connected when removing an
arbitrary node. This exact concept is characterized by the
biconnected component, which are the connected compo-
nents which stay connected after an arbitrary node is re-
moved. The existence of a large biconnected component is
thus a simple and fundamental property of a graph robust
to fragmentation. Another, though related, often studied
form of stability looks at the flow through or the transport
capability [10] of a graph. Also here a large biconnected
component is a good indicator for stability. Intuitively, in
a biconnected component there is never a single bottleneck
but always a backup path to reach any node. This ensures

a Present address: hendrik.schawe@uni-oldenburg.de
b Present address: a.hartmann@uni-oldenburg.de

the function of the network even in case that an arbitrary
edge has too low throughput or an arbitrary node of the
biconnected component is damaged.

At the same time the biconnected component is a sim-
ple concept enabling to some extent its treatment by an-
alytical means for some graph ensembles. For example,
the mean size 〈S2〉 of the biconnected component for a
graph with a given degree distribution is known [18]. Also
the percolation transition of the biconnected component
for scale free and Erdős-Rényi graphs is known to co-
incide with the percolation transition of the single con-
nected component and its finite size scaling behavior is
known [20]. Nevertheless, a full description of any random
variable is only obtained if its full probability distribution
is known. To our knowledge, concerning the size of the bi-
connected component this has not been achieved so far for
any graph ensemble, neither analytically nor numerically.

For few network observables and some graphs ensem-
bles results concerning the probability distributions have
been already obtained so far. For the size of the connected
component on Erdős-Rényi random graphs analytical re-
sults [21] for the rate function exist, i.e., the behavior of
the full distribution for large graph sizes N . Numerically
it was shown that this is already for relatively small N
a very good approximation [22]. Corresponding numeri-
cal results for two-dimensional percolation have been ob-
tained as well [22]. Similarly there are numerical, but no
analytical works, scrutinizing the size of the related 2-core
over most of its support again for Erdős-Rényi random
graphs [23].

Since similar results seem not to be available concern-
ing the biconnected components, and given its importance
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Large deviations of the length of the longest increasing subsequence of random
permutations and random walks
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We study numerically the distributions of the length L of the longest increasing subsequence (LIS)
for the two cases of random permutations and of one-dimensional random walks. Using sophisticated
large-deviation algorithms, we are able to obtain very large parts of the distribution, especially also
covering probabilities smaller than P (L) = 10−1000. This enables us to verify for the length of the
LIS of random permutations the analytically known asymptotics of the rate function and even the
whole Tracy-Widom distribution, to which we observe a rather fast convergence in the larger than
typical part. For the length L of LIS of random walks, where no analytical results are known to
us, we test a proposed scaling law and observe convergence of the tails into a collapse for increasing
system size. Further, we obtain estimates for the leading order behavior of the rate functions of
both tails.

I. INTRODUCTION

We study the distribution of the length L of the longest
increasing subsequence (LIS) [1] of different ensembles
of random sequences. Here, a subsequence of a given
sequence is obtained by removing arbitrary entries and
keeping the order of the remaining entries. In particu-
lar, the remaining entries are not necessarily neighbors
in the given sequence. For a LIS it is required that the
remaining entries are increasing from left to right and
the number of remaining elements is maximal. An ap-
plication of the LIS is for aligning whole genomes [2].
The first mention of this problem seems to be from Sta-
nis law Ulam [3], and is therefore also known as “Ulam’s
problem”. In his study the mean length L of LIS on ran-
dom permutations (RP) of n integers were scrutinized
by means of Monte Carlo simulations and it was conjec-
tured that in the limit of large n, the length converges to
L = c

√
n, with some constant c, which was later proven

to be c = 2 [4]. In the following years much work was
published scrutinizing the large deviation behavior of this
problem and explicit expressions for both the left (lower)
and right (upper) tail were derived rigorously [5–7]. In-
terestingly, for the LIS of the random permutation it was
shown that the distribution P (L) of its length is a Tracy-
Widom distribution [8]. The Tracy-Widom distribution
was at that time only known from random matrix theory,
where it described the distribution of the largest eigen-
values of the Gaussian unitary ensemble (GUE), an en-
semble of Hermitian random matrices. In physics it came
into focus after an explicit mapping of a 1+1 dimensional
polynuclear growth model [9]. Subsequently other map-
pings of 1+1 dimensional growth models belonging to the
Kardar-Parisi-Zhang universality like an anisotropic bal-
listic deposition [10] were found. Other models in which

∗Electronic address: joern.boerjes@uni-oldenburg.de
†Electronic address: hendrik.schawe@uni-oldenburg.de
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the Tracy-Widom distribution appears, include the to-
tally asymmetric exclusion process [11] and directed poly-
mers [12]. For a pedagogical overview about the relations
of different models exhibiting a Tracy-Widom distribu-
tion, we recommend Ref. [13]. Fluctuations in growth
processes following the Tracy-Widom distribution could
also be observed in experiments, e.g., from growing liq-
uid crystals where the Tracy-Widom distribution of the
GUE appears for circular growth and of the Gaussian or-
thogonal ensemble (GOE) for growth from a flat surface
[14, 15].

The Tracy-Widom distribution seems to occur always
together with a third order phase transition between a
strongly-interacting phase in the left tail and a weakly-
interacting phase in the right tail, whose crossover is
characterized by the Tracy-Widom distribution [16]. For
these third order phase transitions, the probability den-
sity function behaves in the left tail as P (x) ≈ e−nΦ−

with the role of the free energy played by the rate func-
tion Φ−(x) ∼ (a−x)3 for x→ a from the left, where a is
the critical point of the transition, i.e., the scaled mean
value. Here, n is some large parameter, e.g, the system
size. The O(x3) leading order behavior of Φ− gener-
ally leads to a discontinuity in the third derivative of the
free energy and therefore to a third order phase transi-
tion. This seems to be a characteristic sign predicting
the main region of the distribution to follow a Tracy-
Widom distribution. Therefore the behavior of the far
tails of problems of this universality are of great inter-
est to understand this connection better. Consequently
the large deviations of some of these models were studied
thoroughly [16, 17].

For the distribution of the length of the LIS of ran-
dom permutations there are also analytical results for
the large deviations, i.e., the behavior for large values of
n including the far tails [5–8], which also show the char-
acteristic behavior of the above mentioned left-tail rate
function. For the case of the length of the LIS of random
walks, bounds for the behavior of the mean are known
[18] and there is also numerical work which is concerned
with the distribution in the typical region [19], i.e., those
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Was sind Random-Walks?

I Position x(t) ist Summe zufälliger Schritte δi

x(t) =

t∑

i=1

δi, t ≤ T

I skaliert wie r ∝ T ν , ν = 1/2

I Modell für Diffusion

I Modell für Bewegung von Lebewesen
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Was sind Self-Avoiding-Random-Walks?

I Zusatzregeln zur Modellierung komplexerer Objekte
I Polymere: Zwei Teile können nicht das selbe Volumen belegen
I Wachstumsprozesse
I superdiffusiv in niedrigen Dimensionen (ν > 0.5)

SKSAW

SAW

LERW

TSAW
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Smart-Kinetic-Self-Avoiding-Walk und konvexe Hülle

[animation]
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https://data.schawe.me/SKSAW.mp4


Smart-Kinetic-Self-Avoiding-Walk und konvexe Hülle

[animation]
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Kovexe Hüllen von Random Walks

I Revier von Lebewesen Randon-Furling, Majumdar, Comtet (2009)

I Krankheitsausbreitung Dumonteil, Majumdar, Rosso, Zoia (2013)

I grundlegendes Interesse seit ∼ 40 Jahren

〈L〉 〈A〉 Var(A)(Brownsche Brücken)

〈L〉 , 〈A〉(große Klasse von Walks)

1980 1993 2010

Letac, Takács (1980), Letac (1993), Goldman (1996), Majumdar, Comtet, Randon-Furling (2010),
Eldan (2014), Claussen, Hartmann, Majumdar (2015), Kabluchko, Zaporozhets (2016),
Schawe, Hartmann, Majumdar (2017), Schawe, Hartmann, Majumdar (2018)
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Kovexe Hüllen von Random Walks

I Revier von Lebewesen Randon-Furling, Majumdar, Comtet (2009)

I Krankheitsausbreitung Dumonteil, Majumdar, Rosso, Zoia (2013)

I grundlegendes Interesse seit ∼ 40 Jahren
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2014 heute
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Verteilung der Fläche
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Verteilung der Fläche
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Large Deviation Simulation

I Behandle Modell wie kanonisches System ∼ e−E/Θ
I betrachte Fläche als Energie A ≡ E
I künstliche Temperatur Θ

Θ = −10

Θ = −2

Θ
 =

 ±
∞

Θ
 =

 2
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Metropolis Algorithmus

I Markov Kette von Zuständen = Realisierung von RWs

I akzeptiere kleine Änderung mit Wahrscheinlichkeit

pacc = min
{

1, e−∆E/Θ
}

E1 E2 E3 E4 E5

...
change

accept

change

accept

change

accept

change

reject
...

Metropolis et al., 1954
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Large Deviation Simulation
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Kovexe Hüllen von Random Walks

Verteilungen über alle möglichen Werte
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Kovexe Hüllen von Random Walks

Mittelwerte skalieren wie T dν . Verteilung auch?
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Exkurs: Large-Deviation-Theorie

Large-Deviation-Prinzip:
Für T →∞ ist die ganze Verteilung gegeben als Ratenfunktion:

PT (V ) = e−TΦ(V )+o(T )

Ratenfunktion sollte wie Φ ∝ V κ, κ = 1
d(1−ν) gehen. Stimmt das?

0.001

0.01

0.1

1

10

10−1010−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

12825651210242048

Φ
T

=
−

1 T
P
T

(V
)

V/T d

Asymptotic Φ
Φ = asκ, κ = 0.497(1)
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Grundzustandsverteilung eines Random-Energy-Modells

I N Energieniveaus εi, (ε1 ≤ ε2 ≤ .. ≤ εN )

I unabhängig, identisch aus Verteilung p(ε), ε ≥ 0

I K Fermionen

I Grundzustandsenergie E0 =
∑K

i=1 εi

I ähnlich verallgemeinertem Spinglas-Modell Derrida (1980)

E

states

ε1 ε2

ε3ε4 ε5ε6

ε7 ε8

ε9
ε10
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Extrema
K = N : Zentraler
Grenzwertsatz: Gauß
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Was ist die Verteilung für beliebige K?
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Ergebnis von G. Schehr und S. Majumdar
Ausgehend von

P (ε1, · · · , εK) =
Γ(N + 1)

Γ(N −K + 1)

K∏
i=1

p(εi)
K∏
i=2

Θ(εi − εi−1)

[∫ ∞
εK

p(u) du

]N−K

wurde das Skalenverhalten für N →∞ hergeleitet

PK,N (E0) ≈ bN 1
α+1F

(α)
K

(
bN

1
α+1 E0

)

mit explizitem Ausdruck für

∫ ∞
0

F
(α)
K (z)e−λ z dz =

(α+ 1)K

Γ(K)λ(α+1)(K−1)

∫ ∞
0

xαe−λx−x
α+1

[γ(α+ 1, λ x)]K−1 dx

Universell mit zwei Parametern

p(ε)
ε→0≈ Bεα

b = (B/(α+ 1))1/(α+1)
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Numerische Ergebnisse

Exponentialverteilte ε (α = 0, B = 1), K = 20

p(ε) = e−ε, ε > 0
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Numerische Ergebnisse

Erlangverteilte ε (α = 1, B = 1), K = 20

p(ε) = εe−ε, ε > 0
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Zusammenfassung

I Untersuchung von
Verteilungen inklusive
der Enden

I mittels Markov-Chain-
Monte-Carlo

I für sehr unterschiedliche
Modelle

I zur Untersuchung von
Skalenverhalten

I und Ratenfunktionen
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E
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Wang-Landau

Ähnlich Metropolis, aber Akzeptanz mit

pacc(ci → c′) = min

{
1,
g(E(ci))

g(E(c′))

}

g(E) wird während der Simulation angepasst.
co
u
n
t

E

ln
(g
(E
))

E E
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Quickhull
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SAW vs. SKSAW
SAW

1/25

1/25

0

1/25

1/25

1/25

SKSAW

1/18

1/18

0

1/27

1/27

1/27

1/3

1/3

1/3

1/2

1/2

0

1/3

1/3

1/3

1/3

1/3

1/3

3/13 Hendrik Schawe



Warum sollte die Ratenfunktion so aussehen?

LDP: PT = exp(−TΦ(S/T d))
Ansatz: Φ ∝ V κ

Annahme: Skalenform PT (V ) = T−dνP̃ (S/T dν) existiert
Argument: Wenn lhs f(S/T dν), dann rhs auch f(S/T dν)

T−dνP̃ (ST−dν) ≈ exp(−TΦ(S/T d))

∝ exp(−T (S/T d)κ)

= exp(−T dκ−νdκ(S/T d)κ)

= exp(−T−νdκSκ)

= exp(−(S/T νd)κ)

Funktioniert nur mit:

1 = dκ− vdκ⇒ κ =
1

d(1− ν)

4/13 Hendrik Schawe



REM

PK,N (E0) =

∫
P (ε1, · · · , εK)δ

(
E0 −

K∑

i=1

εi

)
K∏

i=1

dεi

Laplacetransformation, Vereinfachungen und große N -Näherungen,
und geeignete Skalierung führen auf N -unabhängige Form: FK ,
deren Laplacetransformation bekannt ist.
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Zweifachzusammenhangskomponenten
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Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth ≤ lowpoint von Kind
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Algortihmus zur Komponentenfindung
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Verteilung Zweifachzusammenhangskomponentengröße
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Verteilung verschiedene Komponenten
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Längste aufsteigende Teilfolge
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Datenstruktur für effiziente MCMC changes
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Ratenfunktionen, Zufallspermutation
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Skalenverhalten, Random Walk
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