Large Deviations of Convex Hulls of Random

 Walks and Other Stochastic ModelsHendrik Schawe

19.03.2019

Large Deviations von

- Konvexe Hüllen von Random Walks
- Grundzustands-Energie eines Random-Energy Modells
- Zweifachzusammenhangs-Komponente von Zufallsgraphen
- Längste aufsteigende Teilfolge von Zufälligen Permutationen und Random Walks
untersucht mittels Markov-Chain-Monte-Carlo Simulationen

Was sind Random-Walks?

- Position $\boldsymbol{x}(t)$ ist Summe zufälliger Schritte $\boldsymbol{\delta}_{i}$

$$
\boldsymbol{x}(t)=\sum_{i=1}^{t} \boldsymbol{\delta}_{i}, \quad t \leq T
$$

- skaliert wie $r \propto T^{\nu}, \nu=1 / 2$
- Modell für Diffusion
- Modell für Bewegung von Lebewesen

Was sind Self-Avoiding-Random-Walks?

- Zusatzregeln zur Modellierung komplexerer Objekte
- Polymere: Zwei Teile können nicht das selbe Volumen belegen
- Wachstumsprozesse
- superdiffusiv in niedrigen Dimensionen ($\nu>0.5$)

Smart-Kinetic-Self-Avoiding-Walk und konvexe Hülle

[animation]

Smart-Kinetic-Self-Avoiding-Walk und konvexe Hülle

[animation]

Kovexe Hüllen von Random Walks

- Revier von Lebewesen Randon-Furling, Majumdar, Comtet (2009)
- Krankheitsausbreitung Dumonteil, Majumdar, Rosso, Zoia (2013)
- grundlegendes Interesse seit ~ 40 Jahren

[^0]
Kovexe Hüllen von Random Walks

- Revier von Lebewesen Randon-Furling, Majumdar, Comtet (2009)
- Krankheitsausbreitung Dumonteil, Majumdar, Rosso, Zoia (2013)
- grundlegendes Interesse seit ~ 40 Jahren

[^1]
Verteilung der Fläche

$$
T=100
$$

Large Deviation Simulation

- Behandle Modell wie kanonisches System $\sim e^{-E / \Theta}$
- betrachte Fläche als Energie $A \equiv E$
- künstliche Temperatur Θ

Metropolis Algorithmus

- Markov Kette von Zuständen = Realisierung von RWs
- akzeptiere kleine Änderung mit Wahrscheinlichkeit

$$
p_{\mathrm{acc}}=\min \left\{1, e^{-\Delta E / \Theta}\right\}
$$

Metropolis et al., 1954

Large Deviation Simulation

korrigierte Histogramme

Wahrscheinlichkeitsdichtefunktion

Kovexe Hüllen von Random Walks

Verteilungen über alle möglichen Werte

$T=1024$

Kovexe Hüllen von Random Walks

Mittelwerte skalieren wie $T^{d \nu}$. Verteilung auch?

LERW, $\nu=4 / 5, d=2$

Exkurs: Large-Deviation-Theorie

Large-Deviation-Prinzip:
Für $T \rightarrow \infty$ ist die ganze Verteilung gegeben als Ratenfunktion:

$$
P_{T}(V)=e^{-T \Phi(V)+o(T)}
$$

Ratenfunktion sollte wie $\Phi \propto V^{\kappa}, \kappa=\frac{1}{d(1-\nu)}$ gehen. Stimmt das?

Grundzustandsverteilung eines Random-Energy-Modells

- N Energieniveaus $\varepsilon_{i},\left(\varepsilon_{1} \leq \varepsilon_{2} \leq . . \leq \varepsilon_{N}\right)$
- unabhängig, identisch aus Verteilung $p(\varepsilon), \varepsilon \geq 0$
- K Fermionen
- Grundzustandsenergie $E_{0}=\sum_{i=1}^{K} \varepsilon_{i}$
- ähnlich verallgemeinertem Spinglas-Modell Derrida (1980)

Extrema

$K=N$: Zentraler
Grenzwertsatz: Gauß

$K=1$: Extremwerttheorie:
Weibull

Was ist die Verteilung für beliebige K ?

Ergebnis von G. Schehr und S. Majumdar

Ausgehend von

$$
P\left(\varepsilon_{1}, \cdots, \varepsilon_{K}\right)=\frac{\Gamma(N+1)}{\Gamma(N-K+1)} \prod_{i=1}^{K} p\left(\varepsilon_{i}\right) \prod_{i=2}^{K} \Theta\left(\varepsilon_{i}-\varepsilon_{i-1}\right)\left[\int_{\varepsilon_{K}}^{\infty} p(u) \mathrm{d} u\right]^{N-K}
$$

wurde das Skalenverhalten für $N \rightarrow \infty$ hergeleitet

$$
P_{K, N}\left(E_{0}\right) \approx b N^{\frac{1}{\alpha+1}} F_{K}^{(\alpha)}\left(b N^{\frac{1}{\alpha+1}} E_{0}\right)
$$

mit explizitem Ausdruck für
$\int_{0}^{\infty} F_{K}^{(\alpha)}(z) e^{-\lambda z} \mathrm{~d} z=\frac{(\alpha+1)^{K}}{\Gamma(K) \lambda^{(\alpha+1)(K-1)}} \int_{0}^{\infty} x^{\alpha} e^{-\lambda x-x^{\alpha+1}}[\gamma(\alpha+1, \lambda x)]^{K-1} \mathrm{~d} x$
Universell mit zwei Parametern

$$
p(\varepsilon) \stackrel{\varepsilon \not \overbrace{0}}{\approx} B \varepsilon^{\alpha}
$$

$$
b=(B /(\alpha+1))^{1 /(\alpha+1)}
$$

Numerische Ergebnisse

Exponentialverteilte $\varepsilon(\alpha=0, B=1), K=20$

$$
p(\varepsilon)=e^{-\varepsilon}, \varepsilon>0
$$

Numerische Ergebnisse

Erlangverteilte $\varepsilon(\alpha=1, B=1), K=20$

$$
p(\varepsilon)=\varepsilon e^{-\varepsilon}, \varepsilon>0
$$

Zusammenfassung

- Untersuchung von Verteilungen inklusive der Enden
- mittels Markov-Chain-Monte-Carlo
- für sehr unterschiedliche Modelle
- zur Untersuchung von Skalenverhalten
- und Ratenfunktionen

Wang-Landau

Ähnlich Metropolis, aber Akzeptanz mit

$$
p_{\mathrm{acc}}\left(c_{i} \rightarrow c^{\prime}\right)=\min \left\{1, \frac{g\left(E\left(c_{i}\right)\right)}{g\left(E\left(c^{\prime}\right)\right)}\right\}
$$

$g(E)$ wird während der Simulation angepasst.

Wang-Landau

Ähnlich Metropolis, aber Akzeptanz mit

$$
p_{\mathrm{acc}}\left(c_{i} \rightarrow c^{\prime}\right)=\min \left\{1, \frac{g\left(E\left(c_{i}\right)\right)}{g\left(E\left(c^{\prime}\right)\right)}\right\}
$$

$g(E)$ wird während der Simulation angepasst.

Wang-Landau

Ähnlich Metropolis, aber Akzeptanz mit

$$
p_{\mathrm{acc}}\left(c_{i} \rightarrow c^{\prime}\right)=\min \left\{1, \frac{g\left(E\left(c_{i}\right)\right)}{g\left(E\left(c^{\prime}\right)\right)}\right\}
$$

$g(E)$ wird während der Simulation angepasst.

Wang-Landau

Ähnlich Metropolis, aber Akzeptanz mit

$$
p_{\mathrm{acc}}\left(c_{i} \rightarrow c^{\prime}\right)=\min \left\{1, \frac{g\left(E\left(c_{i}\right)\right)}{g\left(E\left(c^{\prime}\right)\right)}\right\}
$$

$g(E)$ wird während der Simulation angepasst.

Quickhull

SAW vs. SKSAW

SKSAW

Warum sollte die Ratenfunktion so aussehen?

LDP: $P_{T}=\exp \left(-T \Phi\left(S / T^{d}\right)\right)$
Ansatz: $\Phi \propto V^{\kappa}$
Annahme: Skalenform $P_{T}(V)=T^{-d \nu} \widetilde{P}\left(S / T^{d \nu}\right)$ existiert Argument: Wenn Ihs $f\left(S / T^{d \nu}\right)$, dann rhs auch $f\left(S / T^{d \nu}\right)$

$$
\begin{aligned}
T^{-d \nu} \widetilde{P}\left(S T^{-d \nu}\right) & \approx \exp \left(-T \Phi\left(S / T^{d}\right)\right) \\
& \propto \exp \left(-T\left(S / T^{d}\right)^{\kappa}\right) \\
& =\exp \left(-T^{d \kappa-\nu d \kappa}\left(S / T^{d}\right)^{\kappa}\right) \\
& =\exp \left(-T^{-\nu d \kappa} S^{\kappa}\right) \\
& =\exp \left(-\left(S / T^{\nu d}\right)^{\kappa}\right)
\end{aligned}
$$

Funktioniert nur mit:

$$
1=d \kappa-v d \kappa \Rightarrow \kappa=\frac{1}{d(1-\nu)}
$$

REM

$$
P_{K, N}\left(E_{0}\right)=\int P\left(\varepsilon_{1}, \cdots, \varepsilon_{K}\right) \delta\left(E_{0}-\sum_{i=1}^{K} \varepsilon_{i}\right) \prod_{i=1}^{K} \mathrm{~d} \varepsilon_{i}
$$

Laplacetransformation, Vereinfachungen und große N-Näherungen, und geeignete Skalierung führen auf N-unabhängige Form: F_{K}, deren Laplacetransformation bekannt ist.

Zweifachzusammenhangskomponenten

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Algortihmus zur Komponentenfindung

Artikulationspunkt wenn depth \leq lowpoint von Kind

Verteilung Zweifachzusammenhangskomponentengröße

Verteilung verschiedene Komponenten

Längste aufsteigende Teilfolge

$$
S=(\underline{3}, 9, \underline{4}, \overline{1}, \overline{2}, \underline{7}, \overline{6}, \underline{8}, 0,5)
$$

Datenstruktur für effiziente MCMC changes

9	2	5	3	8	1

9	2	5	6	8	1

Ratenfunktionen, Zufallspermutation

Skalenverhalten, Random Walk

[^0]: Letac, Takács (1980), Letac (1993), Goldman (1996), Majumdar, Comtet, Randon-Furling (2010),
 Eldan (2014), Claussen, Hartmann, Majumdar (2015), Kabluchko, Zaporozhets (2016),
 Schawe, Hartmann, Majumdar (2017), Schawe, Hartmann, Majumdar (2018)

[^1]: Letac, Takács (1980), Letac (1993), Goldman (1996), Majumdar, Comtet, Randon-Furling (2010), Eldan (2014), Claussen, Hartmann, Majumdar (2015), Kabluchko, Zaporozhets (2016), Schawe, Hartmann, Majumdar (2017), Schawe, Hartmann, Majumdar (2018)

